初一数学下寒假培优训练讲义--平行线.doc

上传人:叶*** 文档编号:40124150 上传时间:2022-09-08 格式:DOC 页数:25 大小:916.50KB
返回 下载 相关 举报
初一数学下寒假培优训练讲义--平行线.doc_第1页
第1页 / 共25页
初一数学下寒假培优训练讲义--平行线.doc_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《初一数学下寒假培优训练讲义--平行线.doc》由会员分享,可在线阅读,更多相关《初一数学下寒假培优训练讲义--平行线.doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初一数学寒假培优训练一(余角,补角以及三线八角,平行线的判定)一、考点讲解:1余角:如果两个角的和是直角,那么称这两个角互为余角2补角:如果两个角的和是平角,那么称这两个角互为补角3对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角4互为余角的有关性质: 1 2=90,则1.2互余反过来,若1,2互余则1+2=90同角或等角的余角相等,如果l十2=90 ,1+ 3= 90,则 2= 35互为补角的有关性质:若A +B=180则A.B互补,反过来,若A.B互补,则A+B180同角或等角的补角相等如果A C=18 0,A+B=18 0,则B=C6对顶角的性质:对顶角

2、相等二、互为余角.互为补角.对顶角比较项目定义性质图形互余角两个角和等于(直角)同角或等角的余角相等12互补角两个角和等于(平角)同角或等角的补角相等12对顶角两直线相交而成的一个角两边分别是另一角两边反向延长线对顶角相等12三、经典例题剖析: ABEOCD1234例1如图所示,AOB是一条直线,问图中互余的角有哪几对?哪些角是相等的? (例1) 练习: 1. 如图所示,AOE是一条直线,则 (1)如果那么 ,= 。 (2)和互为余角的角有 和相等的角有 例21和2互余,2和3互补,1=63,3=_ _ (练习1)练习: 1. 如果一个角的补角是150 ,那么这个角的余角是_ 2. 1和2互余

3、,2和3互补,3=153,l=_ 例3. 若l=22,且1+2=90则1=_,2=_练习: 1. 一个角等于它的余角的2倍,那么这个角等于它补角的( ) A.2倍B.倍C.5倍D.倍 2. 已知一个角的余角比它的补角的还少,求这个角。四、巩固练习: 1_的余角相等,_的补角相等2.一个角的余角( ) A.一定是钝角 B.一定是锐角 C.可能是锐角,也可能是钝角 D.以上答案都不对3下列说法中正确的是( )A两个互补的角中必有一个是钝角 B一个角的补角一定比这个角大 C互补的两个角中至少有一个角大于或等于直角 D相等的角一定互余5若两个角互补,则( ) A.这两个都是锐角 B.这两个角都是钝角

4、C.这两个角一个是锐角,一个是钝角 D.以上结论都不对6一个角的余角比它的补角的九分之二多1,求这个角的度数7下列说法中正确的是( ) A.相等的角是对顶角B.不是对顶角的角不相等 C.对顶角必相等D.有公共顶点的角是对顶角8三条直线相交于一点,所成对顶角有( ) A.3对B.4对C.5对D.6对9下列说法正确的是( ) A.不相等的角一定不是对顶角B.互补的两个角是邻补角 C.两条直线相交所成的角是对顶角D.互补且有一条公共边的两个角是邻补角10.如图l21,直线AB,CD相交于点O,OEAB于点O,OF平分AOE, 11530,则下列结论中不正确的是( )A2 =45 B1=3 CAOD及

5、1互为补角 D1的余角等于753011为下面推理填写理由。O12ACBD(1)互为余角(已知),( )(2)如图所示,AB.CD相交于点O(已知),( )(3)(已知),( )(4),(已知),A=B( ) (11题)五.关于同位角.内错角和同旁内角1共同点:都是两条直线被第三条直线所截得到的不具有共公顶点的两个角之间的关系,这两个角有一条边在同一直线上。2不同点:同位角在两条直线的“同方”,第三条直线的“同侧”,(简称:位置相同的角,形状呈“F”字形)。 内错角的两条直线“内侧”,第三条直线“两旁”(位置错开,形状呈“Z”字形)。 同旁内角在两直线之间,第三条直线“同旁”(形状呈“C”字形)

6、。 另外注意:寻找“三线八角”关键是找准截线,截线是公共边所在的那条直线。六.角位置的确定巩固练习:1如图1所示,直线a,b,c两两相交,共构成 对对顶角。2如图2,能及1构成同位角的角有( )A.2个 B.3个 C.4个 D.5个3如图2,能及1构成同旁内角的角有( )A.2个 B.3个 C.4个 D.5个4如图3所示,已知四条直线AB,BC,CD,DE。 问:1=2是直线_和直线_被直线_所截而成的_角. 1=3是直线_和直线_被直线_所截而成的_角.4=5是直线_和直线_被直线_所截而成的_角.2=5是直线_和直线_被直线_所截而成的_角.5如图4所示,下列各组判断错误的是( )(A)2

7、和3是同位角 (B)1和3是内错角(C)2和4是同旁内角 (D)1和2是内错角七.直线平行的条件(又叫平行线的判定); 1同位角相等,两直线平行; 2内错角相等,两直线平行; 3同旁内角互补,两直线平行; 4同时平行于第三条直线的两条直线也互相平行。例1如图所示,和是什么角?由哪两条直线被什么样的第三条直线所截?和呢?和呢?和呢?和呢?ABCD1234练习: (例1)ACEFNMDB 1. 如图所示,根据下列条件:,可以判定那两条直线平行,并说明判定的依据。 (练习1) (练习2)2.如图所示,AB.CD两相交直线及EF.MN两平行直线及EF.MN两平行直线相交,试问一共可以得到同旁内角多少对

8、?ABCDE(例2)例 2如图,已知B+C+D=360,则ABED,为什么?练习: 1已知:如图,B1B2=A1A2A3 (即向左凸出的角的和等于向右凸出的角的和),求证:AA1BA3AA1A2A3B1B2B(练习 1)ABCDEF2如图所示,已知,试说明,AB及EF有怎样的位置关系?并说说你判断的理由。(练习2) 例 3.如图所示,直线AB.CD被直线EF所截,如果1=2,CNF=BME,那么ABCD,MPNQ,请说明理由。 练习: 1231.如图所示,直线被直线所截,的3倍等于是的余角,求证:. (练习1)ABCDFEG12(练习2)2.已知:如图,ADBC,EFBC,1=2,求证:ABG

9、F例4给下列证明过程填写理由:ABE13CDF24(例4) 已知:如图所示,ABBC于B,CDBC于C,1=2,求证:BECF 证明:ABBC于B,CDBC于C,( ) 1+3=90,2+4=90( ) 1及3互余,2及4互余( ) 又1=2,( ) _=_( )BECF( )练习:已知:如图2-18,直线AB.CD.EF交于点O,ABCD,1=27求:2,FOB的度数解:ABCD,(已知)COB=_( )1=27(已知) 3=_,3_2( )2=_( )2+FOB=_( )FOB=_八.巩固练习1下列说法正确的是( ) A.同位角相等B.同旁内角互补 C.若,则互补 D.对顶角相等2同一平面

10、内有三条直线,若,则及( ) A.平行B.垂直C.相交D.重合3一个人从A点出发向北偏东方向走了4m到B点,两从B点向南偏西的方向走了3m到C点,那么等于( ) A. B. C. D.4如图2-11,直线AB.CD相交于O点,AOD及BOD叫做_角;AOD及BOC叫_角;若AOD=2BOD,则BOD=_度,AOC=_度5.如图2-14,直线AD.BC被CE所截,C的同位角是_,同旁内角是_;1及2是_._被_所截得的_角;AB.CD被AD所截,A的内错角是_,A和ADC是_角;AB.CD被BD所截,_和_是内错角6.如图2-15,AOOC,OBOD1_2( )7.已知:如右图,FEAB,CDA

11、B,1=2,求证:AGD=ACB。8已知:如图2-17,COD是直线,且1=3,说明A.O.B三点在一条直线的理由可以写成:COD是一条直线( ) 1+2=_( )1=3( ) _3=_ A,O,B在一条直线上初一数学寒假培优训练二(平行线的性质)一.知识点讲解:平行线的特征1两直线平行,同位角相等。2两直线平行,内错角相等。CABD13两直线平行,同旁内角角互补。例1 如图所示,ABCD,ACBD。分别找出及1相等或互补的角。 (例1)练习: 1如图246,两条直线被第三条直线所截,则 ( )A.同位角必相等 B内错角必相等 C.同旁内角必互补 D同位角不一定相等 2如图247,DEBC,D

12、FAC在图中和C相等的角有 ( )A1个 B2个 C. 3个 D4个ABCD例2 如图,ABCD,B=D,比较A和C的大小,你是怎样推论的?(例2)练习: 1. 如图254,若ABEF,BCDE,则E+B=_.2. 如图255,已知1=2,BAD=57,则B=_.3. 如图256所示,CD平分ACB,DEBC,AED=70,则EDC=_.例3 如图,ABCD,求证:EAC (例3)练习:1如图258,ABCD,则1+A+B=_.2 完成下列推理:如图259,已知1=36,C=74,B=36,求4的度数 1= _ =36, _ ( ) 4=_=_( ) 3. 如图243,求证:三角形的内角和等于

13、180例4 如图,已知ABCD,BAE40,ECD62,EF平分AEC求AEF的度数 (例4)练习:1. 如图252所示,ABCD,1=50,则2=_.2. 如图253,ABD=CBD,DFAB,DEBC,则1及2的大小关系是_. 例5 如下图,已知CBAB,点E在AB上,且CE平分BCD,DE平分ADC,EDCDCE90求证:DAAB (例5)练习:1. 已知:如图260,1=2,C=D求证:A=F 2. 如图261所示,已知直线MN分别及直线AB.CD相交于E.F,ABCD,EG平分BEF,FH平分CFE求证:EGFH例6 如图237,ABCD,直线EF分别交AB.CD于正.F,EG平分B

14、EF,若1=72,则2=_度练习: 如图264所示,已知MNAB,垂足为G,MNCD,垂足为H,直线EF分别交AB.CD于G.Q,GQC=120求EGB和HGQ的度数点拨:(1)聪明的同学会问:过A点作EFBC,可达到证明的目的;那么过B点或C点作平行线是不是也可行?均可行这就是思维的灵活性;(2)让思维飞扬起来:本题可以推广吗?可以三边形(即三角形)的内角之和为180;四边形的内角和为2180(如图244);五边形的内角和为3180;n边形的内角和为(n-2)180(n边形可以分为(n-2)个小三角形的内角和)二:巩固训练1下列说法正确的是 ( )A两条平行线被第三条直线所截,那么有3对内错

15、角相等 B平行于同一直线的两直线平行C垂直于同一直线的两直线垂直 D两直线被第三条直线所截,同位角相等 2.两条平行线被第三条直线所截,其同位角的平分线可以组成 ( )A.2条平行线,2个直角 B. 2条平行线,4个直角 C.2组平行线,4个直角 D.2组平行线,16个直角3.如图248,ABFF,CDEF,1=F=45,那么及FCD相等的角有 ( )A1个 B2个 C. 3个 D4个4如果两个角的两条边分别平行,而其中一个角比另一个角的3倍少20,那么这个角的度数是 ( )A.50或130 B.60或120 C65或115 D.以上都不是5如图249所示,如果ADBC,则:1=2;3=4;1

16、+3=2+4上述结论中一定正确的是 ( )A.只有 B.只有 C.和 D.6如图250,直线a及b相交,直线c及d平行,图中内错角共有 ( )A48对 B24对 C16对 D8对7如图2-51所示,ABCD,ACBD,下面推理不正确的是 ( ) AABCD(已知),5=A(两直线平行,同位角相等)BABCD(已知),3=4(两直线平行,内错角相等)CABCD(已知),1=2(两直线平行,内错角相等)DACBD(已知),3=4(两直线平行,内错角相等)8如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能 ( )A相等 B互补 C相等或互补 D相等且互补9若两条平行线被第三条直线所截,

17、则同旁内角的平分线相交所成的角的度数是_.10若一个角的两边分别平行于另一个角的两边,则这两个角_.11如图257,DHEGBC,DCEF,则及1相等的角有_个 12已知:如图262,ACDE,DCEF,CD平分BCA求证:EF平分BED【综合能力训练】13若两条平行线被第三条直线所截,则一对同位角的平分线的位置关系是()A相交 B平行 C垂直 D不能确定14若两条平行线及第三条直线相交,那么一组内错角的平分线互相()A平行 B相交 C垂直 D重合15如下图,DHEGBC,且DCEF,那么图中及BFE相等的角(不包括BFE本身)的个数应是()A2个 B4个 C5个 D6个 (15题) (16题

18、)16如上图,已知ABCD,ADBC,B50,EDA60,则CDO_17如下图,已知CD平分ACB,DEBC,AED50,求EDC的度数 (17题)18如下图,已知ABDF.DEBC,B65,求BOE.D的度数 (18题) 初一数学寒假培优训练三(平行线性质及几何推理语言专题训练)一.平行线的性质 【性质定理】1.平行线的性质一: 。2.平行线的性质二: 3.平行线的性质三: ABCDE【推理语言训练经典例题】例1 已知:如图,ADE=60,B=60,C=80。问AED等于多少度?为什么? 答: AED= 。理由: ADE=B=60 (已知) DE/BC ( ) AED=C ( ) (例1)C

19、 =80 AED= 。练习:1.如图:(1) ADBC(已知) B+ =1800( );(2)1= (已知) 2.如图,已知1=1350,8=450,直线a及b平行吗?说明理由:(1)1=1350 (已知) 2= 2= ab( )(2)8=450(已知) 6=8=450 ( ) + =1800 ab ( )例2 已知:如图,1=ABC=ADC,3=5,2=4,ABC+BCD=180。(1)1=ABC(已知)AD ( )(2)3=5(已知)ABCD12345AB ( )(3)2=4(已知)(4)1=ADC(已知) ( ) (例2)(5)ABC+BCD=180(已知)练习: 1. 如图:(1) E

20、FAB,(已知) 1= ( );(2) 3= (已知) ABEF ( );(3) A= (已知) ACDF ( );(4) 2+ =1800(已知) DEBC ( );(5) ACDF(已知) 2= ( );(6) EFAB(已知) FCA+ =1800( )2下列说法错误的是( )A. 内错角相等,两直线平行 B. 两直线平行,同旁内角互补C. 相等的角是对顶角 D. 等角的补角相等3.一个角的余角是46,这个角的补角是( )A.134 B.136 C.156 D.144例3 如图:(1)A= (已知)ABCDEF123ACED( )(2)2= (已知)ACED( )(3)A+ =180(已

21、知)ABFD( ) (例3)(4)AB (已知)2+AED=180( )(5)AC (已知)C=1( )练习:1.如图:BE平分ABC(已知)1=3( )又1=2(已知)_=2_( ) (练习1)AED=_( )2.如图4,已知ABDE,A=150,D=140,则C的度数是( )A.60 B.75 C.70 D.503.若两条平行线被第三条直线所截,则同一对同位角的平分线互相 ( )A.垂直B.平行C.重合D.相交 (练习2) 例 4 如图,ab,1=122,3=50,求2和4的度数。 (例4) 练习:1.如图,直线a及b平行,1(3x+70),2=(5x+22),求3的度数。 (练习1) 2

22、.如图,已知ABCD,BCDE,那么B+D=_.3.如图,已知CE是DC的延长线,ABDC,ADBC,若B=60,则BCE=_,D=_,A=_. (练习2) (练习3)【巩固练习】1如图,ABCD,1102,求2.3.4.5的度数,并说明根据?2如图,EF过ABC的一个顶点A,且EFBC,如果B40,275,那么1.3.C.BACBC各是多少度,为什么?3.如果A3518,那么A的余角等于;4.一个角的补角比这个角的余角大度;5.推理填空,如图B;ABCD();DGF;CDEF();ABEF;B180();【综合训练】1如图1示,AOB=90,COD=90,则AOD及1的关系是 ,AOD及BO

23、C的关系是 ,理由是 。2.如图2,直线AB及CD交于点O,指出图中的一对对顶角 ,如果AOC=40那么BOD= 。3.如图2,AOC及AOD互补,BOD及AOD互补,则可得AOC=BOD,这是根据 。4.如图3,1的同位角是 ,1的同旁内角是 ,1的内错角是 。5.如图3,已知ab。若1=43,则6= ,理由是 ; 若4=128,则7= 。 6.如图4是一条街道的两个拐角ABC及BCD均为140,则街道AB及CD的关系是 ,这是因为 。7.已知一个角等于它的余角的一半,则这个角的度数是 。8.一对邻补角的平分线的夹角是 度9.已知:如图,1=2,则有( )A.ABCD B.AEDF C. A

24、BCD 且AEDF D.以上都不对 10.如图5,直线AB及CD交于点O,OEAB于O,图1及2的关系是( )A.对顶角 B.互余 C.互补 D相等11. 下列说法正确的是( ) 图5 A.相等的角是对顶角 B.一对同旁内角的平分线互相垂直C.对顶角的平分线在一条直线上 D.同位角相等12.如图6,直线ab,若1=118,则2=_. 图613.如图7,直线AB及CD平行吗?说明理由。 图714.如图8,已知ABAB,BCBC,那么B及B有何关系?为什么? 图815.如图9已知ABCD,且B=40,D=70,求DEB的度数。(提示:过E作EFAB) 图916.如图10,已知,试判断及的关系,并说

25、明你的理由图10图1117.如图11,问吗?为什么? 初一数学寒假培优训练四(平行线的判定及性质综合训练专题)一平行线的判定一.填空1如图1,若A=3,则 ; 若2=E,则 ;若 + = 180,则 abcd123图3图243215ab ACB41235图4ABCED123图12若ac,bc,则a b3如图2,写出一个能判定直线ab的条件: 4在四边形ABCD中,A +B = 180,则 ( )5如图3,若1 +2 = 180,则 。6如图4,1.2.3.4.5中, 同位角有 ; 内错角有 ;同旁内角有 7如图5,填空并在括号中填理由:(1)由ABD =CDB得 ( );(2)由CAD =AC

26、B得 ( );(3)由CBA +BAD = 180得 ( )ADCBO图5图651243l1l2图754321ADCB 8如图6,尽可能多地写出直线l1l2的条件: 9如图7,尽可能地写出能判定ABCD的条件来: 10如图8,推理填空:123AFCDBE图8(1)A = (已知), ACED( );(2)2 = (已知), ACED( );(3)A + = 180(已知), ABFD( );(4)2 + = 180(已知), ACED( );EBAFDC图9二.解答下列各题11如图9,D =A,B =FCB,求证:EDCF132AECDBF图1012如图10,123 = 234, AFE = 60,BDE =120,写出图中平行的直线,并说明理由 13如图11,直线AB.CD被EF所截,1 =2,CNF =BME。求证:ABCD,MPNQF2ABCDQE1PMN图11 二平行线的性质一.填空1如图1,已知1 = 100,ABCD,则2 = ,3 = ,4 = 2如图2,直线AB.CD被EF所截

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁