2022年数学知识在实际生活中的应用 .pdf

上传人:H****o 文档编号:39893771 上传时间:2022-09-08 格式:PDF 页数:5 大小:83.15KB
返回 下载 相关 举报
2022年数学知识在实际生活中的应用 .pdf_第1页
第1页 / 共5页
2022年数学知识在实际生活中的应用 .pdf_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《2022年数学知识在实际生活中的应用 .pdf》由会员分享,可在线阅读,更多相关《2022年数学知识在实际生活中的应用 .pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、数学知识在实际生活中的应用乐安县第二中学易新江一、数学知识在体育比赛中的应用体育比赛经常是人们生活中关注的焦点,不同的体育项目,以及同一项目在不同的时候往往采取不同的赛制,常见的赛制有循环赛、淘汰赛、对抗赛、擂台赛、挑战赛等。比赛中有许多计数问题要涉及,有些数据的统计对于比赛的组织者、参赛选手、教练员来说显得十分重要。下面举例说明几种赛制下的场次数量或可能结果的计算方法。1、循环赛循环赛因其突出的公平性在体育比赛中被广泛采用,循环赛又有单循环赛与双循环赛之分。例 1有 7 支队伍参加篮球赛,比赛采用单循环赛(即任何两支球队之间都比赛一场)。问:共需要比赛多少场?解比赛的场数是从 7 个不同元素

2、中取出2 个元素的组合数,即 C=21场,共需要比赛 21 场。例 2有 5 个足球队分在同一小组参加世界杯预选赛,比赛采用主、客场循环赛制(即双循环赛)。问:这个小组共需要比赛多少场?解比赛的场数就是从5 个不同元素中取出2 个元素的排列数,即P=20 场,共需要比赛 20 场。2、淘汰赛淘汰赛因其赛程短而适合于参赛队伍(或选手)较多的比赛,又因其有较大的偶然性而有利于“黑马”的产生。例 3有 100 名乒乓球选手参加世界锦标赛,比赛采用淘汰赛(即每场比赛淘汰一名选手),最后决出冠、亚军。问:共需要比赛多少场?解因为每场比赛要淘汰一名选手,而要决出冠军就要淘汰99 名选手,所以共需要比赛99

3、 场。名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 5 页 -例 4第十六届世界杯足球赛决赛阶段共有32 支球队参加,比赛时先把 32 支球队平分成 8 个小组,各组都进行单循环赛,然后,由各组的前两名共 16 个球队进行淘汰赛决定冠军、亚军。问:总共需要比赛多少场?解根据题意,单循环赛的比赛场数是8C=48 场,16 强之间进行的淘汰赛还要比赛 15 场,所以,总共需要比赛的场数是48+15=63 场。3、对抗赛有比赛就有对抗,对抗赛是考查比赛双方整体实力高低的一种赛制,它同时也考验着教练员的遣兵布阵能力。例 5甲、乙两队各出 7 名队员参加围棋对抗赛(即一名甲方队员与一方乙

4、方队员对阵,7 对队员同时开赛)。问:总共有多少种不同的对阵方法?解把甲队 7 名队员依次排成一排,先可以从乙队的7 名队员中任选一名与甲队的第一名队员对阵有7 种方法,再可以从乙队剩下的6 名队员中任选一名与甲队的第二名队员对阵有6 种方法,依次类推,根据乘法原理,总共的不同对阵方法数为P=5040种。4、擂台赛擂台赛是一种有着悠久历史的比赛赛制,是盛产英雄的场所。中日围棋擂台赛更是风行一时。例 6甲、乙两队各出 7 名队员按事先排好的顺序出场参加围棋擂台赛,双方先由 1 号队员比赛,负者被淘汰,胜者再与负方2 号队员比赛,依次类推,直到有一方队员全被淘汰为止,另一方获得胜利,形成一种比赛过

5、程。问:所有可能出现的比赛过程的种数有多少种?解把甲、乙双方队员分别记作A1,A2,A7;B1,B2,B7,每一个比赛过程对应着这14 个元素的一个排列,且满足Ai的下标从左至右是递增的,Bi的下标从左至右也是递增的。由于从 14 个位置中取出 7 个来,“有序”地排上 A1,A2,A7有 C 种排法,而剩下的 7 个位置“有序”地排上 B1,B2,B7只有一种排法,所以,问题的实质是从 14 个不同元素中取出7 个的组合数,得 C=3432 种。即所有可能出现的比赛过程的种数有3432 种。名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 5 页 -二、数学知识在家用电中的应用随

6、着科学技术的发展,串、并联电路在日常生活及生产中时常可见。下面我们用概率知识来研究串、并电路工作的可靠性问题。(一)、简单串、并联电路正常工作的概率例 1、如图 1,用 A、B、C 三种不同(N1)的元件连接成两个系统:串联系统N1和并联系统 N2,当元件 A、B、C 正常工作的概率分别为 0.7、0.8、0.9时,分别求出 N1、(N2)N2正常工作的概率。分析与解:系统 N1是串联,A、B、C 图 1相互独立,只有同时工作N1才会正常工作,记其为事件ABC,根据相互独立事件同时发生的概率计算公式,所以P(N1)=P(ABC)=P(A)P(B)P(C)=0.70.80.9=0.504 系统

7、N2是并联电路,A、B、C 只要至少有一个正常工作,则系统N2就能正常工作,正常工作的事件有:A B C,AB C,A BC,A BC,ABC,ABC,ABC 共七种,它们彼此为互斥事件P(N2)就等于这七种事件的概率之和,而这七种事件的对立事件有ABC 一种。P(N2)=1P(ABC)=1P(A)P(B)P(C)=1(10.7)(10.8)(10.9)=10.006=0.994 可见并联电路比串联电路工作可靠性要大得多,譬如收音机或电视机电路里的桥式整流电源电路及推挽输出电路等都是比较可靠的工作电路。对于多个元件组成的串联电路或并联电路的可靠性问题,仿照例1 的计算方法类似地可计算出其正常工

8、作的概率。因此例1 给我们解决串、并联电路正常工作的概率问题提供了一种解题模式:就是串联电路正常工作的概率等于各元件正常工作的概率之积;并联电路正常工作的概率等于1减去各元件不能正常工作的概率之积的差,这样两个电路可靠性简单模型A B C A B C 名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 5 页 -1 是我们今后研究复杂电路可靠性的基础。(二)、串、并联混合电路正常工作的概率例 2、用 4 个相同的元件连接成如图 2 所示的两种电路系统N3,N4,(N3)每个元件正常工作的概率都为P(0P1,分别求出这两种电路系统正常工作的概率,并比(N4)较它们的大小。分析与解:对于

9、该例我们必图 2须先整体考虑,看整体上是属于例1 中的两种类型的哪种类型,不难得出整体上 N3是由部分电路 A、B 与 C、D 组成的串联型电路,N4整体上是由部分电路 A、C 与 B、D 组成的并联型电路。对于电路系统 N3,部分电路 A 与 B 及 C 与 D 各自组成并联电路,于是电路 A 与 B 正常工作的概率为1P(AB),部分电路 C 与 D 正常工作的概率为 1P(CD)。P(N3)=1P(AB)1P(CD)=1P(A)P(B)1P(C)P(D)=1(1P2)2=P2(2P)2对于电路 N4,A 与 C 不能正常工作的概率为1P(AC),B 与 D不能正常工作的概率为1P(BD)

10、,P(N4)=11P(AC)1P(BD)=11P(A)P(C)1P(B)P(D)=1(1P2)2=P2(2P2)P(N3)P(N4)=P2(2P2)P2(2P2)=2 P2(1P2)0,系统电路 N3正常工作的概率大。上面可得出处理串并联混合电路的规律:理解掌握两个串、并联电路A B C D A B C D 名师资料总结-精品资料欢迎下载-名师精心整理-第 4 页,共 5 页 -5 6 4 3 D1D2的基本类型是关键,整体识别类型,分部计算概率。例 3、如图 3 为继电器接点电路,假设每个接点闭合的概率为0.9,C12 C2各接点闭合否相互独立,求A 至 B 是通路的概率。A B 分析与解:

11、设每个继电器接点闭合的概率为 P,则 P=0.9,A 至 B E1 E2由 C1至 C2,D1至 D2,E1至 E2三条图 3线路并联而成,设该三条线路通路的概率分别为P1、P2、P3。C1至 C2通路的概率是P1=1(1P)(1P)P=PP(1P)2=P32P2D1至 D2通路的概率是 P2=P,E1至 E2通路的概率中 P3=P,A 至 B 不通的概率是(1P1)(1P2)(1P3)=(1P32P2)(1P)(1P2)=P63P5P44P33 P2P1。A 至 B 通路的概率是1(1P1)(1P2)(1P3)=P63P5P44P33 P2P。=0.997929。名师资料总结-精品资料欢迎下载-名师精心整理-第 5 页,共 5 页 -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁