《2022年等离子体减阻 .pdf》由会员分享,可在线阅读,更多相关《2022年等离子体减阻 .pdf(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、等离子体减阻名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 19 页 -一、飞行器的升力、阻力、控制方法1.飞行器升力的产生伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。机翼升力的产生主要是靠上表面吸力的作用,而不是主要靠下表面的压力高于大气压的情况下,由上表面吸力所形成的升力,一般占总升力的60%到 80%左右,而下表面的正压力所形成的升力只不过占总升力的 20%到 40%左右。生活实例:喷雾器,足球中的“香蕉球”,乒乓球的弧圈球流速小,压力大,正压托力流速大,压力小,负压吸力(升力主要来源)2.飞行器的阻力阻力是与飞机运动方向相反 的空气
2、动力,起着 阻碍 飞行器前进的作用。低速飞行时的阻力种类:摩擦阻力(解释)压差阻力(解释)诱导阻力(专业性强,不解释)干扰阻力(专业性强,不解释)(a)摩擦阻力名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 19 页 -当有粘性的空气流过飞机时,紧贴飞机表面的一层空气,与飞机表面发生粘性摩擦,这一层空气完全粘附在飞机表面上,气流速度降低为零。紧靠这静止空气层的外面第二气流层,因受这静止空气层粘性摩擦的作用,气流速度也要降低,但这种作用要弱些,因此气流速度不会降低为零。再往外,第三气流层又要受第二气流层粘性摩擦的作用,气流速度也要降低,但这种作用更弱些,因此气流速度降低就更少些。这
3、样,沿垂直于飞机表面的方向,从飞机表面向外,由于粘性摩擦作用的减弱,气流速度就一层一层的逐渐增大,到附面层边界,就和主流速度相等了。这层气流速度由零逐渐增大到主流速度的空气层,就是附面层,或边界层附面层内,气流速度之所以越贴近飞机表面越慢,这必然是由于这些流动空气受到了飞机表面给它的向前的作用力的作用的结果。根据作用和反作用定律,这些被减慢的空气,也必然要给飞机表面一个向后的反作用力,这就是飞机表面的摩擦阻力。摩擦阻力边界层(b)压差阻力生活历经:人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。空气流过机翼时,在机翼前缘部分,受机翼阻挡,流速减慢,压力增大;在机翼后缘,由于气流分离形成涡
4、流区,压力减小。这样,机翼前后便产生压力差,形成阻力。这种由前后压力差形成的阻力叫压差阻力。机身、尾翼等飞机的其它部件都会产生压差阻力。名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 19 页 -压差阻力压力大压力小生活观察例子:汽车开过,在 车身后 的灰尘之所以被吸起,就是由于车身后面涡流区内的空气压力小的缘故。名师资料总结-精品资料欢迎下载-名师精心整理-第 4 页,共 19 页 -3.降低飞行器的阻力A)降低摩擦阻力减少飞行器飞机同空气的接触面积,减少摩擦阻力;提高飞行器表面的光滑度;如有的高速飞机甚至将表面打磨光。维护使用中,保持好飞机表面光洁。如上飞机,要求穿软底鞋,铺
5、好脚踏布等。飞机要定期清洗。停放时加盖蒙布,以防风沙雨雪侵蚀。实验表明:湍流附面层 的摩擦阻力要比 层流附面层 的摩擦阻力大得多。因此,尽可能在机翼上保持层流附面层,相应减小摩擦阻力。层流区湍流区40%100%名师资料总结-精品资料欢迎下载-名师精心整理-第 5 页,共 19 页 -B)降低压差阻力方法降低物体的迎风面积;采用流线形:降低压差阻力。(形状对升力、阻力影响的细致情况:最大厚度位置,对升阻力也有影响。最大厚度位置靠前,机翼前缘势必弯曲得更厉害些,导致流管在前缘变细,流速加快,吸力增大,升力较大。但因后缘涡流区大,阻力也较大。最大厚度位置靠近翼弦中央,升力较小,但其阻力也较小。因为,
6、最大厚度位置靠后,最低压力点,分离点均向后移,层流附面层加长,湍流附面层减短,使摩擦阻力减小,所以阻力较小。)提高飞行器表面的光滑度,边界层分离点后移,层流段增加,湍流段减少,摩擦阻力降低,同时压差阻力也降低。降低飞行器的仰角(有时应用目的矛盾:如起飞,爬高)仰角C)降低压差阻力的重要性在通常条件下,压差阻力一般大于摩擦阻力,降低压差阻力重要。D)降低飞行阻力的重要性提高飞行器速度和增加航程。飞机的阻力下降百分之几,对飞行器和民航机来说,每年可节省上千亿美元的燃料成本。集中讲授内容4.大仰角飞行及控制名师资料总结-精品资料欢迎下载-名师精心整理-第 6 页,共 19 页 -A)大仰角飞行的必要
7、性起飞,爬高,降落B)大仰角飞行时出现的问题迎面面积增加,压差差阻力增大;大迎角时,边界层分离点前移,机翼后部的涡流区扩大,压力减小,机翼前后的压力差增加,压差阻力增加。(细致情况:在小迎角的情况下增加迎角时,由于升力的增加和涡流区的扩大都很慢,故压差阻力和诱导 阻力增加 都很少,这时机翼的阻力主要是摩擦阻力,因此整个机翼 阻力增加 不多。当迎角逐渐变大以后,再增大迎角时,由于机翼升力的增加和涡流区的扩大都加快,故压差阻力和 诱导阻力 的增加也随之加快。特别是诱导阻力,在大迎角时,随着迎角的增大而增加更快。因此,整个机翼的阻力随着迎角的增大而增加较快。这时,诱导阻力是机翼阻力的主要部份。超过临
8、界迎角以后,虽然诱导阻力要随着升力的降低而减小,但由于压差阻力的急剧增加,结果使整个机翼阻力增加 更快。简单说:迎角增大,阻力增大;迎角越大,阻力增加 越多;超过临界迎角,阻力急剧增大。)名师资料总结-精品资料欢迎下载-名师精心整理-第 7 页,共 19 页 -大迎角时,机翼升力下降。大迎角飞行阻力大的不良后果:升力减小,阻力大。飞行器失速,即只爬高,前行速度慢。附:小迎角飞行问题飞机以小迎角进行跨音速和超音速飞行时,随着 M数增大,翼面上 激波与边界层 相互干扰增强到一定程度,也会使边界层 分离,使翼面上空气动力随时间强烈振荡,引起飞机抖振、操纵面嗡鸣等现象,从而限制飞机巡航速度的提高,降低
9、飞机的机动性能,因此 边界层 分离的实验与理论计算一直是人们关注的重要课题。C)大仰角飞行问题的解决方法思路:问题由边界层的过早分离产生,问题解决途径是尽量增加层流面,避免边界层过早分离,降低湍流层面积。解决方法:优化机翼形状,可变的机翼形状,提高表面光滑度(前面有叙述),但效果有限。气流控制:通过物面上的喷孔(狭缝)吹出流体,以增加表面滞流的能量;通过物面上的狭缝,吸走滞流,使边界层变薄,以抑制分离;用不同气体喷射,加速滞流。新思路:若等离子体能产生气流,即能控制边界层名师资料总结-精品资料欢迎下载-名师精心整理-第 8 页,共 19 页 -二、等离子体减阻方法1.基本知识回顾电磁学尖端放电
10、中的“离子风”。2.等离子体控制飞行器边界层和减阻离子风对边界层的影响;plenum chamber outer skin inner skin Boundary layer thins and becomes fuller across slot 采用打孔表面、横向隙缝吸走滞流,降低边界层厚度。名师资料总结-精品资料欢迎下载-名师精心整理-第 9 页,共 19 页 -正电极负电极为什么只强调离子的作用?在电场中,电子、离子均被加速。当电子、离子与中性气体粒子时,离子与中性气体粒子碰撞中传递给中性气体的动量大,而电子传递给中性气体粒子的动量小(电子的动能可有效地转化为中性气体粒子的内能,产生分
11、解、激发、电离。),后者是前者的百分之几。放电形式电晕,辉光。问题:电弧放电适合边界层控制?等离子体减阻优点直接将能量转化为动能,无需运动的机械装置(如风扇等)。离子风速度与放电电压、电流的关系名师资料总结-精品资料欢迎下载-名师精心整理-第 10 页,共 19 页 -0.01.02.03.04.05.06.0012345678Voltage(kV)Velocity(m/s)4 kHz5 kHz6 kHz7 kHz8 kHzVoltageVelocityPl impr(2mm et 0,5mm)x=0,5cm et y=1mmV(kV)I(A)U(m/s)0005101530204025602
12、820030360.432600.6331300.90.10.20.30.40.50.60.70.80.9122242628303234)0.20.40.60.81255075100125150)currentVelocity电晕放电对边界层影响的视觉图像名师资料总结-精品资料欢迎下载-名师精心整理-第 11 页,共 19 页 -A0A110A160A200A240边界层随放电电流的变化Reattachment 出现Reattachment 点前移名师资料总结-精品资料欢迎下载-名师精心整理-第 12 页,共 19 页 -在不同角度下离子风对边界层的影响名师资料总结-精品资料欢迎下载-名师精心
13、整理-第 13 页,共 19 页 -进一步提高离子风速的方法多相放电串联加速Theory of Peristaltic Flow Accelerator?Phase angle?=N=phasesper period?Electrostatic wave propagation?Wave numberL=distance between twoelectrode stripsN360)sin(0kxtVV2kNLPolyphasepower Supplysin(t)sin(t+)sin(t+2)sin(t+3)sin(t+4)Plasma?ElectrodestripsConductingSh
14、eetElectrodex名师资料总结-精品资料欢迎下载-名师精心整理-第 14 页,共 19 页 -多相串联加速电极之一串联加速电极之二(同相)名师资料总结-精品资料欢迎下载-名师精心整理-第 15 页,共 19 页 -离子风边界层控制实验系统之一离子风边界层控制实验系统之二3.其他等离子体减阻方法等离子体逆向喷流减阻名师资料总结-精品资料欢迎下载-名师精心整理-第 16 页,共 19 页 -等离子体喷出时组里减少Assumed paper is devoted to the problem of high-speed dense flow management by the plasma
15、of electrical discharges excited inflow.The results of wind tunnel experiments with the discharges of different types,analytical,and CFD efforts are going to be presented.There are no doubts now that the plasma methods based on electrical discharges generation have a practical potential for a flow/f
16、light control 1-8.An idea of the method can be formulated on the most simple manner as following:modification of flow-field structure and,consequently,changing a pressure and tangential tension near surfaces by means bulk forces excitation in EM fields and heat release into predefined space area wit
17、h predefined parameters distribution and at predefined tempering.Conventional methods to advance aerodynamic characteristics of aero-vehicles and its parts or to adjust the trajectory are based on application of mechanical elements,which use energy of approach airflow for redistribution of pressure
18、on surfaces,and application of jets power in local areas near the surfaces.Among otherknown methods for flow characteristics control the plasma generation is,probably,the most prospective.名师资料总结-精品资料欢迎下载-名师精心整理-第 17 页,共 19 页 -Several main mechanisms of aerodynamic effect due to plasma release can be
19、 described:(1)change of thermodynamic properties of medium,(2)modification of flow-field structure,(3)local artificial separation and(4)boundary layer modification.Technically the effects are become apparent in bow shocks transformation,wave drag reduction(thermodynamic and form-factor effects),base
20、 drag reduction,skin friction change,thermal flux reduction(redistribution),adjustment of flow-field structure in inlets/diffusers,etc.Such possibilities can be realized by means of electrical discharge plasma generation;free-localized plasma generation in electromagnetic wave beams;blowing out of h
21、igh enthalpy plasma jets;and by the other similar phenomena.Several model aerodynamic configurations are proposed for an analysis and the testing under the condition of inflow plasma excitation,as it shown in illustration.The first scheme is related to forestream discharge generation,the next ones t
22、o nearwall plasma where the oblique shocks generation and separation take place.The fifth one(transversal discharge)can be applied for flow modification and mixing intensification.In the next case the flowfield modification near plane and profiled plates is explored.The last scheme reflects the situ
23、ation below a backwise wall step.Experiments.The first group of experiments were fulfilled in frames of supersonic drag reduction idea due to discharges generation ahead a simple body.Several types of discharges were explored and described.The next experiments were conducted in a short-duration blow
24、down wind tunnel with a closed test section at Mach number M=1.2-2.0 and static pressure Pst=100-500Torr.The experimental setup has been equipped with a Schlieren system with short time exposure,high-speed video camera,fast line-scan camera,IR camera,set of fast-response pressure transducers,spectro
25、scopic system,photo-sensors,current-voltage sensors,thermocouples and a set of control-measurement devices.The electrodes have been flush mounted on an insert made of a dielectric thermo-refractory material.Typically,a quasi-continuous multi-electrode surface discharge was used for the plasma excita
26、tion.The electric energy input to the plasma volume was 0.1-2kW over a width of the discharge plate of 2-10cm.The plasma temperature was measured in the region of the discharge cords using spectroscopic techniques and was 1.5-4 kK in depending on the experimental conditions.Appropriate experimental
27、results on flowfield control by plasma generation near wall are planed to be presented.It can be considered the following.The plasma of the surface electric discharge changes the structure and the properties of medium in boundary overlayer sufficiently.The transversal surface discharge is more effec
28、tive than longitudinal discharge for energy input and flow structure control.The transversal discharge is an unstable system of relaxation type with hot plasma filaments,which moves with the flow.A local separation occurs in plasma generation area.The generation of plasma overlayer is a method for t
29、he shocks position control 2 near the surface as well as flow parameters in whole duct.The value of input power has a direct effect on 名师资料总结-精品资料欢迎下载-名师精心整理-第 18 页,共 19 页 -the amplitude of the plasma influence.The energetic threshold for global boundary layer separation are defined.An addition of l
30、arge amount of the thermal energy might lead to modification of flow structure.From the other side such an addition can change the parameters of flow significantly and not in the desired direction.The efficiency of the plasma influence is very important at the diminishing of the possible penalties.L
31、ast time a fresh point of view is being crystallized that the plasma technology makes a sense for the gentle correction of flow-field under the off-design operation modes.The idea of plasma strong non-uniformity in space structure,non-equilibrium composition and unsteady temporal behavior gives chan
32、ce to get a quite sufficient effect in flowfield structure under high-speed flows.The non-thermal mechanisms of the plasma effects are going to be discussed in two domains:electrostatic and magnetic volumetric forces generation.It is easily to estimate that Electro-Hydro-Dynamic/Electrostatic(EHD)ef
33、fects might be appeared under low-speed conditions or in distances compared with Debay s radius,that is equivalent to low-density conditions.But under the conditions of boundary layer and strong non-homogeneity of the medium parameters the mechanisms of charge separation and thermal electromotive fo
34、rce generation should be taking into account.The first effect can be realized due to strong transversal gradient of gas velocity;the second occurs due to temperature gradients:).(1 e tg kT grad e E =.A resonant effect of dielectric barrier discharge on transonic flow is shown in experiment as well a
35、s calculated numerically.Vise verse to that the magnetic forces on current in the gas can be quite valuable.The velocity of discharge-induced flow exceeds sonic level at electric current Ipl=102-103A in magnetic field B=1Tl.An appropriate aerodynamic effect is demonstrated experimentally.Analytic ap
36、proach.The analysis of extrusive post-plasma layer thickness is performed on base of 1-D equations for airflow.As it can be considered in a case of nonequilibrium plasma generation in molecular gas with large specific time of V-T relaxation the extrusive layer is long enough to guide the flow struct
37、ure around bodies of real geometry.The estimation of favorable conditions for atmospheric air is done.Computational efforts.The experimental situation is simulated numerically on base of Navier-Stocks approach.If the model of ideal gas was applied a significant qualitative and quantitative distincti
38、ons were observed in comparison with experimental data.An influence of molecular dissociation(five components model N2,O2,N,O,NO)on the computational results was studied and much better agreement was found out.A special attention is paid for vibrational excitation taking into account.名师资料总结-精品资料欢迎下载-名师精心整理-第 19 页,共 19 页 -