《如何解决大规模新能源并网后的消纳难题.doc》由会员分享,可在线阅读,更多相关《如何解决大规模新能源并网后的消纳难题.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、如何解决大规模新能源并网后的消纳难题摘要:电化学储能的技术进步是电力系统和新能源发展的利好,可在电力系统源网荷三方面同步应用的技术,也是有可能改变传统电力系统规划运行的一项重要技术。传统化石能源日渐枯竭,气候变化和环保问题日益突出,催生了以风电和光伏发电为代表的新型突飞猛进,但由于其波动性、间歇性特征,伴随着大规模新能源并网而来首当其冲的是消纳矛盾弃风弃光始终难以彻底解决。对于消纳问题,各利益方站在不同的立场,从资源禀赋、规划、政策和制度多个方面提出了很多建议,但效果并不理想。新能源消纳是一个系统工程,与电源结构、电网互联程度、负荷特性休戚相关,需要政府、电网、发电企业和用户共同努力 。1、新
2、能源为什么会有消纳问题?宏观上看,新能源消纳既有新能源发电本身友好性不高的问题,也有电力系统自身调峰能力不足的问题,源网友好性是新能源消纳问题的主要症结。电力系统由负荷、电源、电网三部分组成,其具有供需动态平衡特征,即电力商品的发输配用全环节必须同时完成,且电力不易大规模存储。这一特征,决定了新能源电力消纳是电力(功率)的瞬时平衡,而发电量只是消纳结果的体现,不能作为衡量消纳好坏、横向比较的指标。长期以来,由于对电源结构规划的重视不够,没有充分认识“基荷、腰荷、峰荷电源结构”这一概念,导致电源装机容量虽然富裕了,但系统调峰问题却更加突出。发达国家十分重视合理的电源结构,使基荷、腰荷、峰荷电源保
3、持最佳比例。如果要用国外一些国家的消纳水平与中国作比较,那么首先要从电源结构这一主要“硬件”比起。电力负荷曲线示意图新能源(如风、光)能量密度低、稳定性较差,其发电具有波动性、间歇性,反调峰特性、极热无风、极寒无光等特征,即系统需要电力时新能源发电少甚至没有、系统要减少发电出力时往往又是新能源大发时段,这会让系统调峰矛盾雪上加霜,也就形成了所谓的“弃电”时段。负荷低谷期,日内是夜间、年内是冬春两季,负荷水平接近常规机组的最小技术出力,这时系统接纳新能源的空间较小,但恰恰是风电大发时段;负荷高峰期,如夏季大负荷期,需要电源发电,但又属于小风季节。光伏发电与风电虽有一定的互补性,但整体上并没有改变
4、新能源的出力特性。新能源消纳理论示意图因此,当新能源发展初期,规模较小,全额收购是有保障的;但当新能源处于高速发展期,大规模新能源并网,足以改变地区电源结构和发电特性,消纳问题会逐步加重;如今,我国新能源(风、光)装机容量占全国装机的比重超过20%,局部地区超过50%,电力系统特性正在发生变化,新能源消纳问题将会成为电力系统规划运行的一个重要课题,也从单纯的技术问题更延伸至“利益之争”。2、新能源消纳的“利益之争”理论上,风电、光伏发电具有零边际成本的经济效益和零边际排放的环保效益,但其利用小时数偏低,风电大多不超过3000小时,光伏发电大多不超过2000小时,大规模并网运行将会拉低电力系统整
5、体利用率,需要从系统整体经济性的角度去衡量新能源发展规模的上限。新能源在电力系统中的地位。没有新能源接入时,系统备用只需要考虑负荷波动;有新能源接入时,系统备用需要考虑负荷和新能源两者的波动,增加了系统运行成本。当前,我国风电、光伏发电装机占比20.6%,消纳市场已经捉襟见肘,但全年风光发电量仅占8.6%。2017年,德国风电和光伏发电装机占比46.6%,全年风光发电量占17.8%。新能源要成为所谓的“主力电源”任重道远。全国电源结构演进(2005-2019年)数据来源:中电联统计数据整理全国发电量结构演进(2005-2019年)数据来源:中电联统计数据整理新能源与其他电源。为保障全额消纳新能
6、源电力,负荷低谷、新能源大发时段,其他电源若深度调峰,要付出高昂的调峰成本。新能源出力变化快,当以煤电机组为主的常规电源深度调峰,导致制粉、除灰、油、汽、水等系统频繁调整,电厂设备磨损大、煤耗高,不安全、不经济运行,迫使部分低碳机组高碳运行。随着大规模新能源并网,如果过分强调新能源全额收购,新能源发展只片面强调成本需求,而不注重系统友好性的提升,则其大规模发展会让其他电源背上沉重的调峰负担,也限制了新能源发展的空间。新能源与电网建设。2018年,国家能源局印发关于减轻可再生能源领域企业负担有关事项的通知(国能发新能201834号),其中有一条是“电网企业负责投资建设接网工程”,由此可以看出,新
7、能源配套接网工程最起码是低效投资。大规模新能源接网和外送工程建设,由于其利用率低(即使按风电年利用小时数3000小时计算,电网工程超过60%的时间处于闲置状况),虽可纳入电网输配电价,但在现行核价规则下,其投资仍难以取得合理回报,这给新能源富集区域的电网企业背上了沉重的负担,又会变相地形成了区域间的“交叉补贴”。3、提升新能源消纳能力和整体经济性新能源发电是多学科技术成果应用的结果,其发展仍需要技术进步支撑。新能源消纳是系统工程,要用系统思维破解消纳矛盾。新能源发电不能只追求成本下降,也要主动加强功率预测、控制技术和故障穿越等技术创新,增强新能源发电的可预见性和可控性,这是打开新能源更大规模发
8、展空间的主要技术手段。电源发展要按照“基荷、腰荷、峰荷电源结构”这一概念,增强电力系统的调节能力,避免被迫新增大量电源但利用率持续下降的现象,提升系统整体经济性,为新能源消纳创造条件。电网发展要充分应用智能电网技术,研究建立与新能源发电相适应的规划、运行技术标准,充分发挥新能源接网工程和外送通道的效率效益,减轻大规模新能源接网和外送的投资压力。用户侧应建立适应新能源电力特征的价格机制,推动实现源网荷互动的透明电力市场,让使用清洁电成为全社会的共识,共同推动新能源电力消纳。电化学储能的技术进步是电力系统和新能源发展的利好,可在电力系统源网荷三方面同步应用的技术,也是有可能改变传统电力系统规划运行
9、的一项重要技术。4、风光发展的尾声?元年?1986年4月,我国第一个风电场在山东荣成并网发电,装机容量165千瓦,年发电量33万千瓦时。到2019年底,我国风电装机容量2.1亿千瓦,年发电量4057亿千瓦时;光伏发电装机容量2亿千瓦,年发电量2238亿千瓦时。当前,我国风电和光伏发电装机容量超过4亿千瓦,95%的利用率目标使得发展与消纳矛盾更加突出,上网电价已处于全面平价时代的“前夜”。今年,要应对的一个重要问题是“抢装潮”,大规模风电和光伏发电项目集中并网,对产业链上各环节的产能都是重大的考验,狂欢之后是大幅回落还是开启高质量发展,这是一个值得思考的问题。如德国,补贴方式改变后,2019年风
10、电装机增速大幅下滑。2005-2019年全国风光装机增速与占比新能源发展的原动力没有变。巴黎协定主要目标是将本世纪全球平均气温上升幅度控制在2摄氏度以内,并将全球气温上升控制在前工业化时期水平之上1.5摄氏度以内。国家电网公司提出了到2050年实现“两个50%”的重要判断,即“2050年我国能源清洁化率(非化石能源占一次能源的比重)达到50%和终端电气化率(电能占终端能源消费的比重)达到50%”。从技术和商业开发成熟度上看,风电和光伏发电仍是近阶段新能源发展的主力,实现平价上网后,风光发展不再需要国家补贴,具备了基本的竞争力,进入了新的发展阶段,仍会保持一定的发展规模和速度。新能源发展的基础没
11、有变。风光发电成本仍呈下降态势,单机容量不断增大,发电效率进一步提升,可保证新能源项目保持一定盈利能力。根据国际可再生能源署(IRENA)在未来风能报告预测,陆上风电应用的涡轮机单机容量将从2018年的平均2.6兆瓦(叶轮直径110米)增加到2025年的5.8兆瓦(叶轮直径170米)。2020年1月27日,美国国家可再生能源实验室(NREL)最新发布了全球太阳能电池实验室最高效率图:单结钙钛矿-硅叠层太阳能电池的最新效率为29.15,这是由德国海姆霍兹柏林材料所(HZB)创造的;NREL刷新了双结砷化镓薄膜太阳能电池的效率,并获得了32.9%效率。系统解决新能源消纳问题的共识已经形成。国家发展改革委安排新能源项目,要求以落实消纳条件为前提。2019年,关于检查中华人民共和国可再生能源法实施情况的报告全文发布,提出针对可再生能源发展的新形势、新问题,适时启动修订可再生能源法,统筹解决消纳问题。“弃电率并非越低越好”、“以合理利用率引导新能源高质量发展”等研究成果引起关注,对于新能源发展客观规律的认识愈发清晰,这必将促进各方更客观地认识新能源发展与消纳,有助于形成合力。2020年,是风电和光伏发电“平价上网”的前夜,我们有理由相信这是新能源发展的元年,由此进入高质量协调发展阶段。7