数学建模最优化方法建模及实现.ppt

上传人:石*** 文档编号:39347544 上传时间:2022-09-07 格式:PPT 页数:63 大小:4.38MB
返回 下载 相关 举报
数学建模最优化方法建模及实现.ppt_第1页
第1页 / 共63页
数学建模最优化方法建模及实现.ppt_第2页
第2页 / 共63页
点击查看更多>>
资源描述

《数学建模最优化方法建模及实现.ppt》由会员分享,可在线阅读,更多相关《数学建模最优化方法建模及实现.ppt(63页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、数学建模最优化方法建模及实现数学建模最优化方法建模及实现现在学习的是第1页,共63页实验目的实验目的实验内容实验内容3、基于最优化方法建模及实现、论文写作。、基于最优化方法建模及实现、论文写作。1、了解最优化问题的基本内容。、了解最优化问题的基本内容。2、用数学软件包、用数学软件包matlab求解求解(非非)线性规划问题。线性规划问题。4、实验题目:钢管的订购与运输。、实验题目:钢管的订购与运输。1、基础知识、例子。、基础知识、例子。3、建模案例:投资的收益与风险、建模案例:投资的收益与风险2、掌握线性规划及非线性规划建模及其、掌握线性规划及非线性规划建模及其MATLAB实现。实现。现在学习的

2、是第2页,共63页最优化问题最优化问题v优化问题,一般是指用“最好”的方式,使用或分配有限的资源,即劳动力、原材料、机器、资金等,使得费用最小或利润最大.v建立优化问题的数学模型 1)确定问题的决策变量 2)构造模型的目标函数和允许取值的范围,常用一组不等式来表示.现在学习的是第3页,共63页T1min(max)(),(,)s.t.()0,1,2,nizf xxxxg xim或(1)(2)由(1)、(2)组成的模型属于约束优化,若只有(1)式就是无约束优化,f(x)称为目标函数,gi(x)称为约束条件若目标函数f(x)和约束条件g(x)都是线性函数,则称该模型是线性规划.现在学习的是第4页,共

3、63页 线性规划模型线性规划模型例1、生产炊事用具需要两种资源劳动力和原材料,某公司制定生产计划,生产三种不同的产品,生产管理部门提供的数据如下 A B C劳动力(小时/件)736原材料(千克/件)445利润(元/件)423现在学习的是第5页,共63页每天供应原材料200kg,每天可使用的劳动力为150h.建立线性规划模型,使总收益最大,并求各种产品的日产量.解解 第一步,确定决策变量.用 分别表示A,B,C三种产品的日产量 第二步,约束条件 原材料:劳动力:第三步,确定目标函数 AxBxCx445200ABCxxx736150ABCxxx423ABCZxxx现在学习的是第6页,共63页例2

4、一家广告公司想在电视、广播上做广告,其目的是尽可能多的招来顾客,下面是调查结果:电视无线电 广播杂志白天最佳时间一次广告费用(千元)40753015受每次广告影响的顾客数(千人)400900500200受每次广告影响的女顾客数(千人)300400200100现在学习的是第7页,共63页这家公司希望广告费用不超过800(千元)还要求:1)至少要有200万妇女收看广告;2)电视广告费用不超过500(千元)3)电视广告白天至少播出3次,最佳时间至少播出2次;4)通过广播、杂志做的广告要重复5到10次.123412341234121234m ax4009005002004075301580030040

5、02001002000.40755003,2,510,510Zxxxxxxxxxxxxs txxxxxx令 分别白天,最佳电视、广播、杂志广告次数 1234,xxxx,现在学习的是第8页,共63页例例3:任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?现在学习的是第9页,共63页解解 设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加

6、工工件1、2、3的数量分别为x4、x5、x6。可建立以下线性规划模型:解答现在学习的是第10页,共63页例例4:某厂每日8小时的产量不低于1800件。为了进行质量控制,计划聘请两种不同水平的检验员。一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15小时/件,正确率95%,计时工资3元/小时。检验员每错检一次,工厂要损失2元。为使总检验费用最省,该工厂应聘一级、二级检验员各几名?解解 设需要一级和二级检验员的人数分别为x1、x2人,则应付检验员的工资为:212124323848xxxx因检验员错检而造成的损失为:21211282)%5158%22

7、58(xxxx现在学习的是第11页,共63页故目标函数为:故目标函数为:2121213640)128()2432(minxxxxxxz约束条件为:0,0180015818002581800158258212121xxxxxx现在学习的是第12页,共63页线性规划模型:线性规划模型:213640minxxz0,01594535 .212121xxxxxxts 解答返 回现在学习的是第13页,共63页线性规划模型的一般形式线性规划模型的一般形式.,.,.,.,.minnixnibxat sxcuinkikikniii2102111 目标函数和所有的约束条件都是决策变量目标函数和所有的约束条件都是决

8、策变量的线性函数。的线性函数。min.ucxAxbstvlbxvub矩矩阵阵形形式式:现在学习的是第14页,共63页实际问题中实际问题中的优化模型的优化模型mixgtsxxxxfzMaxMiniTn,2,1,0)(.),(),()(1或x决策变量决策变量f(x)目标函数目标函数gi(x)0约束条件约束条件数学规划数学规划线性规划线性规划(LP)二次规划二次规划(QP)非线性规划非线性规划(NLP)纯整数规划纯整数规划(PIP)混合整数规划混合整数规划(MIP)整数规划整数规划(IP)0-1整数规划整数规划一般整数规划一般整数规划连续规划连续规划 优化模型的分类优化模型的分类现在学习的是第15页

9、,共63页线性规划问题的求解在理论上有单纯形法,在实际建模中常用以下解法:1.图解法 2.LINGO 软件包;3.Excel中的规划求解;4.MATLAB软件包.现在学习的是第16页,共63页min z=cX bAXts.1、模型:命令:x=linprog(c,A,b)2、模型:min z=cX bAXts.beqXAeq命令:x=linprog(c,A,b,Aeq,beq)或或 x=linprog(c,A,b,Aeq,beq,x0)或或 x,fval=linprog(c,A,b,Aeq,beq)注意注意:若没有不等式:存在,则令A=,b=.bAX 用用MATLAB优化工具箱解线性优化工具箱解

10、线性linear规划规划现在学习的是第17页,共63页3、模型:min z=cX bAXts.beqXAeqVLBXVUB 命令:1 x=linprog(c,A,b,Aeq,beq,VLB,VUB)2 x=linprog(c,A,b,Aeq,beq,VLB,VUB,X0)注意:1 若没有等式约束:,则令Aeq=,beq=.2其中X0表示初始点 beqXAeq4、命令:x,fval=linprog()返回最优解返回最优解及及处的目标函数值处的目标函数值fval.现在学习的是第18页,共63页 321436minxxxz 1231231232380120.3005020 xxxxxxstxxx 解

11、解:编写编写M文件文件xxgh1.m如下:如下:c=6 3 4;A=1,2,-3;0 1 0;b=80;50;Aeq=1 1 1;beq=120;vlb=30,0,20;vub=;x,fval=linprog(c,A,b,Aeq,beq,vlb,vub)To Matlab(xxgh1)123123123123min(6 3 4)1238001050.1 1 112030020 xzxxxxxxstxxxxx 例例5现在学习的是第19页,共63页解解 编写编写M文件文件xxgh2.m如下:如下:c=-0.4-0.28-0.32-0.72-0.64-0.6;A=0.01 0.01 0.01 0.0

12、3 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08;b=850;700;100;900;Aeq=;beq=;vlb=0;0;0;0;0;0;vub=;x,fval=linprog(c,A,b,Aeq,beq,vlb,vub)To Matlab(xxgh2)max 6543216.064.072.032.028.04.0 xxxxxxz 85003.003.003.001.001.001.0.654321xxxxxxts 70005.002.041xx 10005.002.052xx 90008.003.063xx

13、6,2,10jxj 例例6现在学习的是第20页,共63页S.t.Xz8121110913min 9008003.12.15.000000011.14.0X500600400100100010010001001X,0654321xxxxxxX改写为:问题问题例例3的解答现在学习的是第21页,共63页编写编写M文件文件xxgh3.m如下如下:f=13 9 10 11 12 8;A=0.4 1.1 1 0 0 0 0 0 0 0.5 1.2 1.3;b=800;900;Aeq=1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1;beq=400 600 500;vlb=zeros(

14、6,1);vub=;x,fval=linprog(f,A,b,Aeq,beq,vlb,vub)To Matlab(xxgh3)现在学习的是第22页,共63页x=0.0000 600.0000 0.0000 400.0000 0.0000 500.0000fval=1.3800e+004计算结果:计算结果:即在甲机床上加工600个工件2,在乙机床上加工400个工件1、500个工件3,可在满足条件的情况下使总加工费最小为13800。现在学习的是第23页,共63页 问题问题 213640minxxz s.t.)45(3521xx改写为:例例4的解答现在学习的是第24页,共63页编写编写M文件文件xx

15、gh4.m如下:如下:c=40;36;A=-5-3;b=-45;Aeq=;beq=;vlb=zeros(2,1);vub=9;15;%调用linprog函数:x,fval=linprog(c,A,b,Aeq,beq,vlb,vub)To Matlab(xxgh4)现在学习的是第25页,共63页结果为:结果为:x=9.0000 0.0000 fval=360即只需聘用9个一级检验员。注:注:本问题应还有一个约束条件:x1、x2取整数。故它是一个整数线性规划整数线性规划问题。这里把它当成一个线性规划来解,求得其最优解刚好是整数:x1=9,x2=0,故它就是该整数规划的最优解。若用线性规划解法求得的

16、最优解不是整数,将其取整后不一定是相应整数规划的最优解,这样的整数规划应用专门的方法求解。返 回现在学习的是第26页,共63页现在学习的是第27页,共63页 1)首先建立M文件fun.m,定义目标函数F(X):function f=fun(X);f=F(X);其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab求解上述问题,基本步骤分三步:二、非线性规划问题及其二、非线性规划问题及其MatlabMatlab ().()0()0MinF XAXbAeq XbeqstG XCeq XVLBXVUB现在学习的是第28页,共63

17、页 3)建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下:(1)x=fmincon(fun,X0,A,b)(2)x=fmincon(fun,X0,A,b,Aeq,beq)(3)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB)(4)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon)(5)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon,options)(6)x,fval=fmincon(.)(7)x,fval,exitflag=fmincon(.)(8)x,fval,ex

18、itflag,output=fmincon(.)输出极值点M文件迭代的初值参数说明变量上下限现在学习的是第29页,共63页注意:注意:1 fmincon函数提供了大型优化算法和中型优化算法。默认时,若在fun函数中提供了梯度(options参数的GradObj设置为on),并且只有上下界存在或只有等式约束,fmincon函数将选择大型算法。当既有等式约束又有梯度约束时,使用中型算法。2 fmincon函数的中型算法使用的是序列二次规划法。在每一步迭代中求解二次规划子问题,并用BFGS法更新拉格朗日Hessian矩阵。3 fmincon函数可能会给出局部最优解,这与初值X0的选取有关。现在学习的

19、是第30页,共63页1.写成标准形式写成标准形式:s.t.00546322121xxxx2100 xx22212121212minxxxxf22212121212minxxxxf 2x1+3x2 6 s.t x1+4x2 5 x1,x2 0例例1现在学习的是第31页,共63页2.先建立先建立M-文件文件 fun1.m:function f=fun1(x);f=-x(1)-2*x(2)+(1/2)*x(1)2+(1/2)*x(2)2MATLAB(youh1)3.再建立主程序再建立主程序youh1.m:4.运算结果为:运算结果为:x=0.7647 1.0588 fval=-2.0294现在学习的是

20、第32页,共63页1先建立先建立M文件文件 fun2.m,定义目标函数定义目标函数:function f=fun2(x)f=exp(x(1)*(4*x(1)2+2*x(2)2+4*x(1)*x(2)+2*x(2)+1);)12424()(22122211xxxxxexfx x1+x2=0 s.t.1.5+x1x2-x1-x2 0 -x1x2 10 02再建立再建立M文件文件mycon2.m定义非线性约束:定义非线性约束:function g,ceq=mycon2(x)g=1.5+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-10;ceq=;例例2现在学习的是第33页,共63页3

21、主程序主程序youh2.m为为:x0=-1;1;A=;b=;Aeq=1 1;beq=0;vlb=;vub=;x,fval=fmincon(fun2,x0,A,b,Aeq,beq,vlb,vub,mycon2)MATLAB(youh2)4.运算结果为运算结果为:x=-1.2247 1.2247 fval=1.8951现在学习的是第34页,共63页12221122221212min2250s.t.7005,010fXxxgXxxgXxxxx 1先建立先建立M-文件文件fun3.m定义目标函数定义目标函数:function f=fun3(x)f=-2*x(1)-x(2);2再建立再建立M文件文件my

22、con3.m定义非线性约束:定义非线性约束:function g,ceq=mycon3(x)g=x(1)2+x(2)2-25;x(1)2-x(2)2-7;ceq=;例例3现在学习的是第35页,共63页3.主程序主程序youh3.m为为:x0=3;2.5;VLB=0 0;VUB=5 10;x,fval,exitflag,output =fmincon(fun3,x0,VLB,VUB,mycon3)MATLAB(youh3(fun3)现在学习的是第36页,共63页4.运算结果为运算结果为:x=4.0000 3.0000fval=-11.0000exitflag=1output=iterations

23、:4 funcCount:17 stepsize:1 algorithm:1x44 char firstorderopt:cgiterations:返回返回现在学习的是第37页,共63页现在学习的是第38页,共63页建模案例:投资的收益和风险建模案例:投资的收益和风险(1998A)(1998A)现在学习的是第39页,共63页二、基本假设和符号规定二、基本假设和符号规定现在学习的是第40页,共63页1.1.总体总体风险用所投资的风险用所投资的S Si i中最大的一个风险来衡量,即:中最大的一个风险来衡量,即:iiqxinmax|1,2,三、模型的建立与分析三、模型的建立与分析现在学习的是第41页

24、,共63页3.3.建立模型建立模型00101 2max()minmax().,niiiiiiniiiirp xq xp xMs txin 双目标模型双目标模型为:为:现在学习的是第42页,共63页4.4.模型简化模型简化00101 2max().(),niiiiiiniiiirp xq xaMs tp xMxin 即模型为即模型为:现在学习的是第43页,共63页现在学习的是第44页,共63页四、模型四、模型1 1的求解的求解siri(%)qi(%)pi(%)ui(元)(元)S0(银行)5000S1282.51103S2211.52198S3235.54.552S4252.66.540将将n=4

25、,M=1,及平均收益率及平均收益率ri,风险损失率风险损失率qi,费率费率 pi代入模型代入模型1得:得:00101 2max().(),niiiiiiniiiirp xq xaMs tp xMxin 现在学习的是第45页,共63页 由于由于a是任意给定的风险度,到底怎样给定没有一个准则是任意给定的风险度,到底怎样给定没有一个准则,不同的投资者有不同的风险度。我们从,不同的投资者有不同的风险度。我们从a=0开始,以步长开始,以步长a=0.001进行循环搜索,编制程序如下:进行循环搜索,编制程序如下:现在学习的是第46页,共63页 a=0;while(1.1-a)1 c=-0.05-0.27-0

26、.19-0.185-0.185;Aeq=1 1.01 1.02 1.045 1.065;beq=1;A=0 0.025 0 0 0;0 0 0.015 0 0;0 0 0 0.055 0;0 0 0 0 0.026;b=a;a;a;a;vlb=0,0,0,0,0;vub=;x,val=linprog(c,A,b,Aeq,beq,vlb,vub);ax=x Q=-val plot(a,Q,.);axis(0 0.1 0 0.5);hold on a=a+0.001;end xlabel(a),ylabel(Q)To Matlab(xxgh5)模型模型1 1的的MATLABMATLAB程序:程序:

27、现在学习的是第47页,共63页a=0.006计算结果:计算结果:现在学习的是第48页,共63页4.在a=0.006=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长很快。在这一点右边,风险增加很大时,利润增长很缓慢,所以对于风险和收益没有特殊偏好的投资者来说,应该选择曲线的拐点作为最优投资组合,大约是a*=0.6%,Q*=20%,所对应投资方案为:风险度风险度 收益收益 x0 x1 x2 x3 x4 0.0060 0.2019 0 0.2400 0.4000 0.1091 0.2212 3.3.曲线上的任一点都表示该风险水平的最大可能收益和该收益要求的最小风险。对于不同风险的

28、承受能力,选择该风险水平下的最优投资组合。当投资越分散时,投资者承担的风险越小,这与题意一致。即:冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资。1.1.风险大,收益也大。模型模型1 1的结果分析的结果分析现在学习的是第49页,共63页此模型又可改写为min y001s.t.0,00,1,niiiiniiiiiirpxkpxMx qyxyinL模型模型2 2的求解:的求解:现在学习的是第50页,共63页min y.01234012341230 050 270 190 1850 185 101 10210451065=10 0250 0150 055xxxxxkxxxxxxyxyx

29、y .(),40 0260 0,1,40ixyxiy由于k是任意给定的盈利,到底怎样给定没有一个准则,不同的投资者有不同的盈利.我们从k=0.05开始,以步长k=0.01进行循环搜索,编制程序如下:模型模型2 2的求解:的求解:现在学习的是第51页,共63页k=0.05while k0.26/1.01;C=0 0 0 0 0 1;A=0 0.025 0 0 0-1;0 0 0.015 0 0-1;0 0 0 0.055 0-1;0 0 0 0 0.026 -1;B=0;0;0;0;Aeq=0.05 0.27 0.19 0.185 0.185,0;1 1.01 1.02 1.045 1.065,

30、0;Beq=k;1;Vlb=0;0;0;0;0;0;%or Vlb=zeros(6,1);Vub=;x,fval=linprog(C,A,B,Aeq,Beq,Vlb,Vub);模型模型2 2的的MATLABMATLAB求解:求解:现在学习的是第52页,共63页kQ=fval x=xplot(k,Q,m.)axis(0 0.5 0 0.05)xlabel(收益k)ylabel(最小风险度Q)title(最小风险度Q随收益R的变化趋势图)hold onk=k+0.01;grid onend模型模型2 2的的MATLABMATLAB求解:求解:现在学习的是第53页,共63页模型模型2 2的结果分析:

31、的结果分析:现在学习的是第54页,共63页此模型又可改写为此模型又可改写为0min(sy-(1-s)niiiirpx01s.t.0,0niiiiiipxMxqyxy模型模型3 3的求解:的求解:现在学习的是第55页,共63页012340.050min(.270.190.1850.185sy-(1-s)()xxxxx.(),012341234 101 10210451065=10 0250 0150 0550 0260 0,1,40ixxxxxxyxyxyxyxiy模型模型3 3的求解:的求解:现在学习的是第56页,共63页s=0while s1;C=-0.05*(1-s),-0.27*(1-s

32、),-0.19*(1-s),-0.185*(1-s),-0.185*(1-s),s;A=0 0.025 0 0 0-1;0 0 0.015 0 0-1;0 0 0 0.055 0-1;0 0 0 0 0.026-1;B=0;0;0;0;Aeq=1 1.01 1.02 1.045 1.065,0;Beq=1;Vlb=0;0;0;0;0;0;%or Vlb=zeros(6,1);Vub=;x,fval=linprog(C,A,B,Aeq,Beq,Vlb,Vub);模型模型3 3的的MATLABMATLAB程序:程序:现在学习的是第57页,共63页sQ=x(6)x=xplot(s,Q,r.)axis

33、(0 1 0 0.025)xlabel(权重s)ylabel(风险度Q)title(风险度Q随权重s的变化趋势图)hold ons=s+0.001;grid onend模型模型3 3的的MATLABMATLAB程序:程序:现在学习的是第58页,共63页模型模型3 3的结果分析:的结果分析:现在学习的是第59页,共63页实验作业:实验作业:钢管订购及运输优化模型钢管订购及运输优化模型20002000年年“网易杯网易杯”全国大学生数学建模竞赛全国大学生数学建模竞赛B B题题现在学习的是第60页,共63页 要铺设一条输送天然气的主管道A1A2A15,能生产这种钢管的厂家一共有:S1,S2,S7。厂家

34、与管道间的交通网络交通网络已知。假设沿管道或者原来有公路,或者建有施工公路。为方便计算,1km主管道钢管称为1单位钢管。一个钢厂如果承担制造这种钢管,至少需要生产500个单位。钢厂Si在指定期限内能生产该钢管的最大数量为si 个单位,钢厂1单位钢管的出厂销价为pi万元,如下表:现在学习的是第61页,共63页I1 2 3 4 5 6 7 SI800 800 1000 2000 2000 2000 3000 Pi160 155 155 160 155 150 160 1单位钢管的铁路运价铁路运价如下表,1000km以上每增加1至100km运价增加5万元。公路运输费用公路运输费用为1单位钢管每公里0

35、.1万元(不足整公里部分按整公里计算)。钢管可由铁路、公路运往铺设地点(不只是运到主管道结点A1,A2,A15,而是管道全线)。里程(km)300 301350 351400 401450 451500 运价(万元)20 23 26 29 32 里程(km)501600 601700 701800 801900 9011000 运价(万元)37 44 50 55 60 现在学习的是第62页,共63页 (1 1)请制定一个主管道钢管主管道钢管的订购和运输计划,使总费用最小(给出总费用)。(2 2)请就()的模型分析:哪个钢厂钢管的销价的变化销价的变化对购运计购运计划划和总费用总费用影响最大,哪个钢厂钢管的产量的上限的变化产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果。(3 3)如果要铺设的管道不是一条线,而是一个树形图树形图,铁路、公路和管道构成网络,请就这种更一般的情况给出一种解决办法,并对图()的情形给出模型和结果。需解决的问题需解决的问题:现在学习的是第63页,共63页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁