《专题41 直线与圆锥曲线的位置关系知识点(5页).doc》由会员分享,可在线阅读,更多相关《专题41 直线与圆锥曲线的位置关系知识点(5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-专题41 直线与圆锥曲线的位置关系知识点-第 5 页考点41直线与圆锥曲线的位置关系一、直线与圆锥曲线的位置关系1曲线的交点在平面直角坐标系xOy中,给定两条曲线,已知它们的方程为,求曲线的交点坐标,即求方程组的实数解.方程组有几组实数解,这两条曲线就有几个交点.若方程组无实数解,则这两条曲线没有交点.2直线与圆锥曲线的交点个数的判定设直线,圆锥曲线,把二者方程联立得到方程组,消去得到一个关于的方程.(1)当时,方程有两个不同的实数解,即直线与圆锥曲线有两个交点;方程有两个相同的实数解,即直线与圆锥曲线有一个交点;方程无实数解,即直线与圆锥曲线无交点.(2)当a=0时,方程为一次方程,若b0
2、,方程有一个解,此时直线与圆锥曲线有一个交点;若b=0,c0,方程无解,此时直线与圆锥曲线没有交点.3直线与圆锥曲线的位置关系直线与圆锥曲线相交时,直线与椭圆有两个公共点,与双曲线、抛物线有一个或两个公共点.(1)直线与椭圆有两个交点相交;直线与椭圆有一个交点相切;直线与椭圆没有交点相离.(2)直线与双曲线有两个交点相交.当直线与双曲线只有一个公共点时,除了直线与双曲线相切外,还有可能是直线与双曲线相交,此时直线与双曲线的渐近线平行.直线与双曲线没有交点相离.(3)直线与抛物线有两个交点相交.当直线与抛物线只有一个公共点时,除了直线与抛物线相切外,还有可能是直线与抛物线相交,此时直线与抛物线的
3、对称轴平行或重合.直线与抛物线没有交点相离.二、圆锥曲线中弦的相关问题1弦长的求解(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解;(2)当直线的斜率存在时,斜率为k的直线l与圆锥曲线C相交于两个不同的点,则弦长.(3)当弦过焦点时,可结合焦半径公式求解弦长.2中点弦问题(1)AB为椭圆的弦,弦中点M(x0,y0),则AB所在直线的斜率为,弦AB的斜率与弦中点M和椭圆中心O的连线的斜率之积为定值.(2)AB为双曲线的弦,弦中点M(x0,y0),则AB所在直线的斜率为,弦AB的斜率与弦中点M和双曲线中心O的连线的斜率之积为定值.(3)在抛物线中,以M(x0,y0)为中点的弦所在直线的
4、斜率.1若直线mx+ny=4和O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆+=1的交点有A至多1个B2个C1个D0个3若直线与椭圆有两个公共点,则实数k的取值范围是Ak或kDk且k5已知O是坐标原点,F是椭圆+=1的一个焦点,过F且与x轴垂直的直线与椭圆交于M,N两点,则cosMON的值为ABCD8若直线y=kx-1与抛物线y2=4x有且只有一个公共点,则k的值为_.3(2017天津理科)设椭圆的左焦点为,右顶点为,离心率为已知是抛物线的焦点,到抛物线的准线的距离为(1)求椭圆的方程和抛物线的方程;(2)设上两点,关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点若的面积为
5、,求直线的方程1(2017新课标全国II文科)过抛物线的焦点,且斜率为的直线交于点(在的轴上方),为的准线,点在上且,则到直线的距离为ABCD2(2017新课标全国文科)设A,B为曲线C:y=上两点,A与B的横坐标之和为4(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程3(2017北京文科)已知椭圆C的两个顶点分别为A(2,0),B(2,0),焦点在x轴上,离心率为(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:与的面积之比为4:54(2017天津文科)已知椭圆的左焦点为,右顶点为,点的坐标为,的面积为(1)求椭圆的离心率;(2)设点在线段上,延长线段与椭圆交于点,点,在轴上,且直线与直线间的距离为,四边形的面积为求直线的斜率;求椭圆的方程来源:ZXXK6(2016上海文科)双曲线的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为,是等边三角形,求双曲线的渐近线方程;(2)设,若l的斜率存在,且|AB|=4,求l的斜率.