《第4章 非线性方程求根.ppt》由会员分享,可在线阅读,更多相关《第4章 非线性方程求根.ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第4章 非线性方程求根,非线性科学是当今科学发展的一个重要研究方向,而非线性方程的求根也成了一个不可缺的内容。但是,非线性方程的求根非常复杂。,通常非线性方程的根的情况非常复杂:,无穷组解,所以,只在某个区域内可能解存在唯一,而且经常很简单的形式得不到精确解:,因此,通常我们用迭代法解非线性方程,看迭代法之前,先看看一种简单直观的方法,原理:,4.1对分法,x1,x2,a,b,什么时候停止?,或,x*,While(|a-b|eps) x=(a+b)/2 f(x) 若(|f(x)|eps) return x / x为解 若f(x)*f(b)0 a=x /修正区间为x,b 若f(a)*f(x)0
2、b=x /修正区间为a,x End while,每次缩小一倍的区间,收敛速度为1/2,较慢,且只能求一个根,使用条件限制较大,算法,2,不能保证 x 的精度,4.2 迭代法,f (x) = 0,x = g (x),f (x) 的根,g (x) 的不动点,思路,从一个初值 x0 出发,计算 x1 = g(x0), x2 = g(x1), , xk+1 = g(xk), 若 收敛,即存在 x* 使得 ,且 g 连续,则由 可知 x* = g(x* ),即x* 是 g 的不动点,也就是f 的根。,迭代法的基本步骤如下:,1、给出方程的局部等价形式,2、取合适的初值,产生迭代序列,3、求极限,易知,该
3、值为方程的根,一定收敛吗?,若满足:,1、,2、,可导,且存在正数L1,使得对任意的x,有,则有:,1、存在唯一的点,2、,迭代收敛,且有误差估计,定理,存在唯一性,做辅助函数,,则有,所以,存在点,若,,则有:,又,,则,所以,任意的初值都收敛,证明:,误差估计,由p的任意性,令,证毕,构造满足定理条件的等价形式一般难于做到。要构造收敛迭代格式有两个要素:,1、等价形式,2、初值选取,下面我们开始介绍若干种迭代法的构造方法,4.3 Newton迭代法,将f(x)在初值处作Taylor展开,取线性部分作为f(x)的近似,有:,若,,则有,记为,类似,我们可以得到,这样一直下去,我们可以得到迭代
4、序列,Newton迭代的等价方程为:,所以,若f(x)在a处为单根,则,所以,迭代格式收敛,收敛速度,函数在a处作Taylor展开,即,Newton迭代收敛速度快,格式简单,应用广泛,若a为m重根,取迭代格式为:,若a为重根,则Newton迭代法一般是1阶收敛。,若a为多重根,则a为函数u(x)的单根,例 用Newton迭代法求方程xex-1=0在0.5附近的根,精度要求=10-5.,解 Newton迭代格式为,例:,0为2重根,注:Newtons Method 收敛性依赖于x0 的选取。,x*,4.4 弦截法,将Newton迭代中的导数,用差商代替,有格式,是2步格式。收敛速度比Newton
5、迭代慢,切线,割线,4.4 非线性方程组的Newton迭代法,则,直接推广Newton迭代为:,实际中,用解方程组的形式,Lab04 非线性方程求根,1.分别编写用Newton迭代和弦截法求根的通用程序,2.用如上程序求根,取初值x0 为 0.1,0.2,0.9,9.0,3.取误差限为1.0e-10,给出根和迭代步数。简单分析你得到的数据,Sample Output ( represents a space) Newton迭代,初值、根和迭代步数为0.1,0.244934066848e00 , 5 0.2,0.534607244904e00 , 9 . 弦截法,初值、根和迭代步数为 0.1,0.2,0.244934066848e00 , 10 0.2,0.9,0.534607244904e-01 , 5 .,提高收敛阶的方法:,若,是一个p阶收敛的格式,则,是一个p+1阶收敛的格式,