《2020年全国II卷理科数学高考真题(含答案).docx》由会员分享,可在线阅读,更多相关《2020年全国II卷理科数学高考真题(含答案).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2020年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,有一项是符合题目要求的。1. 已知集合,则A. B. C. D. 2. 若为第四象限角,则A. B. C. D. 3在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,。志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A
2、10名B18名C24名D32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块。下一层的第一环比上一层的最后一环多9块,向外每环依次增加9块。已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A3699块B3474块C3402块D3339块5.若过点的圆与两坐标轴都相切,则圆心到直线的距离为A. B. C. D. 6.数列中,若,则 A. 2B. 3C. 4D. 57.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为,在俯视图中对应的点为,则
3、该端点在侧视图中对应的点为ABCD8.设为坐标原点,直线与双曲线的两条渐近线分别交于两点。若的面积为8,则的焦距的最小值为A4B8C16D329.设函数,则A.是偶函数,且在单调递增B.是奇函数,且在单调递减C.是偶函数,且在单调递增D.是奇函数,且在单调递减10. 已知是面积为的等边三角形,且其顶点都在球的球面上。若球的表面积为,则到平面的距离为ABC. 1D11.若则A. B. C. D. 12. 周期序列在通信技术中有着重要应用,若序列满足 ,且存在正整数,使得成立,则称其为周期序列,并满足的最小正整数为这个序列的周期,对于周期为m的0-1序列, 是描述其性质的重要指标,下列周期为5的0
4、-1的序列中,满足的序列是A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。13.已知单位向量,的夹角为45,与垂直,则k=_.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有 种。15.设复数,满足,则,则_16.设有下列四个命题:两两相交且不过同一点的三条直线必在同一平面内.:过空间中任意三点有且仅有一个平面.:若空间两条直线不相交,则这两条直线平行.:若直线平面,直线平面,则.则下述命题中所有真命题的序号是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题
5、考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题,共60分。17.(12分)中,(1) 求;(2) 若,求周长的最大值.18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分为面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,其中和分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得.(1) 求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数)(2) 求样本的相关系数(精确到0.01);(3)
6、 根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由。附:相关系数,.19. (12分)已知椭圆:的右焦点F与抛物线的焦点重合,的中心与的顶点重合. 过F且与x轴垂直的直线交于A、B两点,交于C、D两点,且.(1) 求的离心率;(2) 设M是与的公共点. 若,求与的标准方程.20. 如图,已知三棱柱的底面是正三角形,侧面是矩形,,分别为,的中点,为上一点,过和的平面交于,交于.(1)证明:,且平面平面;(2)设为的中心,若平面,且,求直线与平面所成角的正弦值 21(12分) 已知函数(1) 讨
7、论在区间的单调性;(2) 证明:;(3) 设,证明.(二)选考题:共10分,请考生在第22、23题中任选一题作答。并用2B铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做第一题计分。22选修4-4:坐标系与参数方程 (10分)已知曲线的参数方程分别为 ,(1) 将的参数方程化为普通方程:(2) 以坐标原点为极点,轴正半轴为极轴建立极坐标系,设的交点为,求圆心在极轴上,且经过极点和的圆的极坐标方程.23. 选修45:不等式选讲(10分)已知函数.(1) 当a=2时,求不等式f(x)4的解集;(2) 若f(x)4,求a的取值范围.参考答案1A2D3B4C5B6C7A8B9D10C1
8、1A12C13 1436 15 1617解:(1)由正弦定理和已知条件得,由余弦定理得,由,得.因为,所以.(2)由正弦定理及(1)得,从而,.故.又,所以当时,周长取得最大值.18解:(1)由己知得样本平均数,从而该地区这种野生动物数量的估计值为60200= 12 000(2)样本的相关系数(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而
9、可以获得该地区这种野生动物数量更准确的估计19解:(1)由已知可设的方程为,其中.不妨设在第一象限,由题设得的纵坐标分别为,;的纵坐标分别为,故,.由得,即,解得(舍去),.所以的离心率为.(2)由(1)知,故,设,则,故.由于的准线为,所以,而,故,代入得,即,解得(舍去),.所以的标准方程为,的标准方程为.20解:(1)因为M,N分别为BC,B1C1的中点,所以MNCC又由已知得AA1CC1,故AA1MN因为A1B1C1是正三角形,所以B1C1A1N又B1C1MN,故B1C1平面A1AMN所以平面A1AMN平面EB1CF(2)由己知得AMBC以M为坐标原点,的方向为x轴正方向,为单位长,建
10、立如图所示的空间直角坐标系M-xyz,则AB=2,AM=连接NP,则四边形AONP为平行四边形,故由(1)知平面A1AMN平面ABC,作NQAM,垂足为Q,则NQ平面ABC设,则,故又是平面A1AM的法向量,故所以直线B1E与平面A1AMN所成角的正弦值为21解:(1)当时,;当时,所以在区间单调递增,在区间单调递减(2)因为,由(1)知,在区间的最大值为,最小值为而是周期为的周期函数,故(3)由于,所以22解:(1)的普通方程为由的参数方程得,所以故的普通方程为(2)由得所以的直角坐标为设所求圆的圆心的直角坐标为,由题意得,解得因此,所求圆的极坐标方程为23解:(1)当时,因此,不等式的解集为(2)因为,故当,即时,所以当a3或a-1时,所以a的取值范围是