《毕业设计(论文)-4轴加工中心机械手自动换刀装置的设计(33页).doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)-4轴加工中心机械手自动换刀装置的设计(33页).doc(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-毕业设计(论文)-4轴加工中心机械手自动换刀装置的设计-第 28 页Qq2604130359本 科 毕 业 设 计题目4轴加工中心机械手自动换刀装置的设计系 别 工程技术系 专 业 机械设计制造及其自动化 学生姓名 学 号 指导教师 李敬 职 称 教授 2015年 4 月 3 日摘 要机械手是自动换刀装置中交换刀具的主要工具,它担负着把刀库上的刀具送到主轴上,再把主轴上已用过的刀具返回刀库上的任务。设计思路是用机械手的动作来实现对加工中心的换刀,机械手的转动有回转液压缸运来实现,其动力则由驱动系统实现。加工中心的自动换刀装置,通常是由刀库和机械手组成,它是加工中心的象征,又是加工中心成败的关
2、键环节。因此各加工中心制造厂家都在下大力研制动作迅速、可靠性高的自动换刀装置,以求在激烈的竞争中取得好效益,自动换刀装置是加工中心的核心内容,各厂家都在保密,极少公开有关资料,尤其机械手部分更是如此。这种机械手的拔刀、插刀动作,大都由油缸动作来完成。根据结构要求,可以采用油缸动,活塞固定;或活塞动,油缸固定的结构形式。整个机械手由机械臂伸缩机构,机械爪开合机构,回转机构及装卸刀具直线运动机构组成。关键词:加工中心; 机械手; 刀库; 机械臂Abstract Manipulator is automatically change tool device the main tool to exch
3、ange tool, it bears on the knife library on the tool to spindle, and then the spindle has used tool returns tasks on tool store. Design idea is to use robots to achieve the action machining center, the rotation of the manipulator change cutters are shipped turn hydraulic cylinder, its power is reali
4、zed by drive system implementation. Machining center, the automatic cutter replacement device is usually composed by knife library and manipulator, it is the symbol of processing center, it is crucial to the success of the processing center link. So the processing center manufactures are developed r
5、apidly next vigorously, high reliability of action, in order to be automatic cutter replacement device in the fierce competition and achieved good benefit, automatically change tool device is the core content of machining center, the manufacturers are confidential, seldom publicly about material, es
6、pecially manipulator part is even more so. This manipulator, a sword, inserted knife action by oil cylinder action mostly to finish. According to the structural requirement, can use oil cylinder move, piston fixed; Or the piston move, oil cylinder fixed structure. The whole manipulator, by mechanica
7、l arm telescopic institution of mechanical claw opening-closing institutions, rotary institutions and loading and unloading tool linear motion mechanism composition. Key words: machining centre; manipulator; magazine tool; mechanical arm目 录1 前言12 加工中心的总体布局12.1 技术条件12.2 总体布局22.3 卧式加工中心的机械结构:23 换刀机械手的
8、设计23.1 刀具的交换装置23.1.1 自动换刀装置23.1.2 机械手的种类43.1.3 手爪的选择83.1.4 刀具的夹持83.2 机械手的驱动装置93.2.1 手臂的伸缩运动:93.2.2 手爪的开合(见自动换刀机械手图)103.2.3 回转运动(见驱动装置图)103.2.4 直线运动113.3 设计计算113.3.1 手指夹紧力的计算:113.3.2 齿轮的设计123.3.3 轴的设计173.3.4 轴承的设计223.3.5 弹簧的设计264 结论29参考文献30致 谢311 前言 本次设计的题目是加工中心的自动换刀装置中的核心部件-机械手的设计。机械手是自动换刀装置中交换刀具的主要
9、工具,它担负着把刀库上的刀具送到主轴上,再把主轴上已用过的刀具返回刀库上的任务。设计此机械手的目的是为了使加工中心能够更快的的工作,使加工中心能够得到更加充分的利用,以实现其的价值所在;再者,由于使用了机械手,减少由于人工换刀带来的生产效率低,并且容易出事故的弊端。本次设计的内容主要有回转液压缸装置和机械运动的驱动系统,对于其中动作的实现则由电气控制来实现。由于本人能力及学识有限,在设计中存在有很多缺陷,望老师们能多加指导。2 加工中心的总体布局盘式刀库的卧式加工中心卧式加工中心的主轴是水平设置的,卧式加工中心刀库容量一般较大,有的刀库可存放几百把刀具,卧式加工中心的结构较立式加工中心复杂,占
10、地面积大,价格也较高,卧式加工中心较适用于加工箱体之类的零件,特别对箱体零件上的一些孔和孔系,以及孔和型腔与基准面有严格要求的箱体,容易得到保证,适合于批量加工。卧式加工中心的功能较立式加工中心多,在立式加工中心上加工不了的工件,在卧式加工中心上一般都能加工。2.1 技术条件我们所设计的加工中心的主要的技术参数有:1. 刀库容量: 24把刀2. 刀柄型号: 标准刀柄3. 刀具最大直径: 1204. 刀具最大重量: 1.5kg 5. 刀具重量: 116. 换刀时间: 3s2.2 总体布局图1 卧式加工中心的总体布局2.3 卧式加工中心的机械结构:1主轴组件 对加工中心主轴组件的基本要求是具有足够
11、的刚度,精度,传递足够的功率和转矩,以及高速运转和适应自动换刀的条件。主轴轴承多采用高精度,高刚度,高速滚动轴承。卧式加工中心的主轴组件按进给功能分有镗轴进给,滑枕进给及非进给主轴等类型,大多数采用非进给型主轴。2立柱 立柱有侧面导轨型与正面导轨型。侧面导轨型立柱便于机床的总体设计,制造成本也较低,并抑易于与非数控卧式镗铣床建立模块化系列关系,但这类立柱在机床工作时受力状况较差,且热变形的对称性差,因而对机床加工精度影响较大。正面导轨型立柱多采用门式结构,有较好的热对称结构和受力条件,多数加工中心采用这种立柱形式。3工作台 卧式加工中心可采用自动分度工作台,数控回转工作台。3 换刀机械手的设计
12、3.1 刀具的交换装置3.1.1 自动换刀装置加工中心区别于NC镗铣床的主要特点就在于它具有根据工艺要求自动更换所需刀具的功能,即自动换刀(ATC)机能。机械手是自动换刀装置中交换刀具的主要工具,它担负着把刀库上的刀具送到主轴上,再把主轴上已用过的刀具返回刀库上的任务。加工中心的自动换刀形式,可分为有机械手换刀方式和无机械手换刀方式两类。无机械手换刀方式,适用于采用40号以下刀柄的小型加工中心或换刀次数少的用量型刀具的重型机床,这种换刀方式没有机械手,因而结构简单。另外,刀库回转是在工步与工步之间,即非切削时进行的。因此,虽然刀库设置在立柱顶面,却免去了刀库回转时的震动对加工精度的影响。无机械
13、手换刀方式中,刀库可以是圆盘型、直线排列式,也可以是格子箱式等。无机械手换刀方式中特别需要注意的是刀库转位定位的准确度,为保证转位准确,就要尽力消除刀库驱动传动链的间隙,为此可采用双导程蜗杆蜗轮副,或采用可以相互错位的两片齿轮结构形式,或采用插销定位、反靠定位等方法来准确定位。圆盘型刀库可设在立柱顶上、立柱主轴箱的侧面,也可设在横梁一端,或设在主轴箱上,由主轴箱和刀库配合运动完成自动换刀动作。直线排列式刀库可设在工作台上方,也可设在工作台的一端或两端,由主轴箱或工作台配合运动完成自动换刀动作。格子箱式刀库可设在双工作台的中间,换刀时,小直径刀具可轴向取刀,大直径刀具可径向取刀。加工中心的自动换
14、刀装置,通常是由刀库和机械手组成,它是加工中心的象征,又是加工中心成败的关键环节。因此各加工中心制造厂家都在下大力研制动作迅速、可靠性高的自动换刀装置,以求在激烈的竞争中取得好效益,自动换刀装置是加工中心的核心内容,各厂家都在保密,极少公开有关资料,尤其机械手部分更是如此。无机械手换刀方式中特别需要注意的是刀库转位定位的准确度。为保证转位准确,就要尽力消除刀库驱动传动链的间隙,为此可采用双导程蜗杆蜗轮副,或采用可以相互错位的两片齿轮结构形式;或采用插销定位、反靠定位等方法来准确定位。采用机械手进行刀具交换的方式应用的最为广泛,这是因为机械手换刀有很大的灵活性,而且可以减少换刀时间。图见零号图自
15、动换刀机械手。换刀动作如图2所示:图2 机械手的换刀动作3.1.2 机械手的种类加工中心换刀机械手的种类繁多,可以说每个厂家都推出自己的独特的换刀机械手,在加工中心的自动换刀系统中,是机械手具体执行刀具的自动更换,对其要求是迅速可靠、准确协调。由于加工中心机床的刀库和主轴,其相对位置距离不同,相应的换刀机械手的运动过程也不尽相同,它们由各种形式的机械手来完成。常见的机械手有:1 单臂单爪回转式机械手机械手摆动的轴线与刀具主轴平行,机械手的手臂可以回转不同的角度来进行自动换刀,换刀具的所花费的时间长,用于刀库换刀位置的刀座的轴线相平行的场合。如图3所示: 图3 单臂单爪回转式机械手2 单臂双爪回
16、转式机械手图4 单臂双爪回转式机械手这种机械手的手臂上有两个卡爪,两个卡爪有所分工,一个卡爪只执行从主轴上取下“旧刀”送回刀库的任务,另一个卡爪则执行由刀库取出“新刀”送到主轴的任务,其换刀时间较上述单爪回转式机械手要短,如图4所示。2 双臂回转式机械手(俗称扁担式)这种机械手的两臂各有一个卡爪,可同时抓取刀库及主轴上的刀具,在回转180之后有同时将刀具归回刀库及装入主轴,是目前加工中心机床上最为常用的一种形式,换刀时间要比前两种都短,如图5所示。图5 双臂回转式机械手这种机械手在有的设计中还采用了可伸缩的臂,如图6所示:图6 双臂回转式机械手3 双机械手这种机械手相当与两个单臂单爪机械手,相
17、互配合起来进行自动换刀。其中一个机械手执行拔“旧刀”归回刀库,另一个机械手执行从刀库取“新刀”插入机床主轴上,如图7所示:图7 双机械手4 双臂往复交叉式机械手图8 双臂往复交叉式机械手这种机械手两臂可往复运动,并交叉成一定角度。两个手臂分别称作装刀手和卸刀手。卸刀手完成往主轴上取下“旧刀”归回刀库,装刀机械手执行从刀库取出“新刀”装入主轴。整个机械手可沿导轨或丝杠作直线移动或绕某个转轴回转,以实现刀库与主轴之间的运送刀具工作,如图8所示双臂端面夹紧式机械手这种机械手只是在夹紧部位上和前几种不同,上述几种机械手均靠夹紧刀柄的外圆表面来抓住刀具,而此种机械手则是夹紧刀柄的两个端面,如图9所示:图
18、9 双臂端面夹紧式机械手3.1.3 手爪的选择机械手的手爪在抓住刀具后,还必须具有锁刀功能,以防止在换刀过程中掉刀或刀具被甩出。当机械手松刀时,刀库的夹爪既起着刀套的作用,又起着手爪的作用。对于双臂回转式机械手的手爪,大都采用机械锁刀方式,有些大型加工中心,亦有采用机械液压锁刀方式,以保证大而重的刀具在换刀中不被甩出。手爪的形式有:机械锁刀手爪弹簧销式手爪,使用这种形式的抓持机构,手爪不需要设置专门的传递装置,因而结构简单,使用广泛。但在机械手有旋转运动时,为避免刀具甩脱,手爪就必须有自锁夹持机构,其结构较复杂。钳形杠杆机械手。这种机械手手爪的张合需要动力传递装置,传动较复杂,但手爪的结构可较
19、简单。使用也较普遍。虎钳形指。在手爪中设有定位销,使刀具在手爪中定位。用这种形式的夹持机构时,刀具需经特殊补充加工,不能使用标准刀具,所以使用者较少。我们在这里采用第一种手爪。3.1.4 刀具的夹持在刀具自动交换装置上,机械手抓刀具的方法大体上可以分为下列两类:柄式夹持(轴向夹持)发兰式夹持图10 刀柄的型式这种夹持方式,在刀具夹头的前端,有供机械手用的发兰盘。采用发兰式夹持,当应用中间搬运装置时,可以很方便地从一个机械手将刀具夹头过渡到另一个辅助机械手上去,刀具夹头采用带洼形的法兰盘夹持刀夹。在这里,我们采用第一种夹持方式,刀柄型号为BT40。图10所示为标准刀具夹头的锥柄柄部,由图可见,刀
20、柄圆柱部分的V形槽是供机械手夹持之用。带V形槽圆柱右端,按所装刀具(例如钻头、铣刀、铰刀及镗杆等)不同,根据标准可设计成不同形式。表1 日本BT标准刀柄的尺寸:柄部型号锥 体螺 纹 孔凸 缘D1Lrl1l2l3d1gd2tbBT4044.4565.419307017M161922.516.1BT4557.1582.81.211387021M20232919.3BT5069.85101.81.513459025M242735.325.73.2 机械手的驱动装置这种机械手的拔刀、插刀动作,大都由油缸动作来完成。根据结构要求,可以采用油缸动,活塞固定;或活塞动,油缸固定的结构形式。整个机械手由机械臂
21、伸缩机构,机械爪开合机构,回转机构及装卸刀具直线运动机构组成。图见自动换刀机械手的驱动装置和驱动装置外形。3.2.1 手臂的伸缩运动:回转头的两端对称分布着两个机械臂,可以同时伸出抓刀。机械臂伸缩机构由回转液压缸1(见驱动外形图),输出轴47,齿轮44以及齿条39和45组成(见自动换刀机械手图)。当压力油通过支架28和贯穿花键轴30的通孔(见换刀机械手驱动装置图)进入回转液压缸1时,推动输出轴47转动,轴上的齿轮44便带动齿条39和44作直线运动,使两只机械臂同时伸出,通过齿条39及44上的挡块52压向调整螺钉53来限制终点位置。同时由左视图中的微动开关30发出信号,以进行下一个动作。当回转液
22、压缸改变油路时,机械臂便缩回。3.2.2 手爪的开合(见自动换刀机械手图)机械臂的头部带有固定手爪14与活动手爪18,用来夹持刀柄之用。活动手爪18可绕小轴15转动,其一端由弹簧杆19作用支靠在小轴20上。当弹簧顶杆3未碰到挡块13而自由伸出时,挡杆22在弹簧作用下,其一端的斜面与活动手爪18的端部斜面台阶相靠,从而将活动手爪18锁死。当挡块13左移,将弹簧顶杆3压入时,顶杆3的一端迫使杠杆21顺时针转动。这样,杠杆21的一端将挡杆22的斜面自活动手爪18的端部斜面滑开。因此,当活动手爪18伸向刀柄拔刀或插刀后收回时,刀柄表面可使活动手爪18压缩弹簧而稍微张开,这样机械爪即可将刀柄抱住或退出。
23、与此同时,齿条44(或39)上的挡杆压于调整螺钉而限位,同时微动行程开关动作发出下一动作的信号。由于机械爪伸向刀柄拔刀,或插刀后收回,都是当机械手处于轴向向左移动后的位置上进行的。为了使机械手的活动手爪18在这时能从自锁状态下松开,在机床床身立柱上设有固定杆35,在机械臂的一侧有挡块装置。挡块13、锥孔盘4(在端面上周向均匀分布有4个锥孔)和轴9固定相连,轴9装于支架12内,其右端又与一端盖10用螺纹固定。当挡块13未与固定杆35相碰时,锥孔盘4处于与钢球5相对位置,弹簧销11顶着端盖10,使锥孔盘4紧靠于支架12的端面上,此时机械臂的弹簧顶杆3自由伸出,活动手爪1处8于锁死状态。当机械手轴向
24、向右移动后,固定杆35迫使挡块13转动,由于此时锥孔盘4端面上的锥孔与钢球5错开,这样锥孔盘4即连同挡块13、轴9、端盖11、压缩弹簧销11向左移动。挡块13即将机械臂上的弹簧顶杆3压入,将活动手爪18自锁紧状态下松开。当机械爪伸出抓住刀柄后,机械手轴向向左伸出,此时挡块13亦同时离开固定杆35,借弹簧1的作用,将挡块13拉回原来的锥孔盘4上锥孔与钢球5相对的原始位置,由弹簧销11的作用,使挡块13又向右移动至锥孔盘4与支架12端面压紧的位置。这时机械臂上的弹簧顶杆3又自由伸出,将活动手爪18锁死,保证机械手将刀具拔出后,机械手能将刀具可靠地夹紧。3.2.3 回转运动(见驱动装置图)回转机械用
25、来实现刀具的交换动作,由图驱动外形装置图可见它由手臂14,回转座51组成的。手臂14与花键轴50固定连接,花键轴与两个花键套筒49相连,后者则由固定在机床立柱上回转座51上的两个滚动轴承支撑。齿轮41通过花键轴套筒安装在花键轴的右端。回转液压缸的结构见第三张图,回转缸壳体79和上端盖86、下端盖74、定片93间均用螺钉联接,并将它们作为一体通过上端盖与固定在立柱上。转轴2支承在上、下端盖上,与动片90固定联接,其伸出端通过花键轴部分与中间座的齿轮联接,向手臂传递运动,当液压缸通入高压油而使转轴转动时,通过传动齿轮99带动齿轮41回转,这样,由花键轴50带动手臂14转动,其转角两相对180的极限
26、位置,可由螺钉67及53限定,同时由螺钉65及68压下微动开关69及52发出到位信号,以进行下一个动作。3.2.4 直线运动回转头14的向左或向右(拔刀或插刀)的直线运动是由液压缸来实现。液压缸座系固定于机床立柱上,活塞杆端部有联接件与花键轴相连。当活塞杆因液压缸进入高压油而向左或向右运动时,通过联接件即可带动花键轴作直线运动,从而带动回转头及机械手臂作向左或向右运动。在液压缸两端设有缓冲装置,可防止活塞与液压缸端面的撞击。当活塞在左右两极限位置时,都设有可调挡块,由微动开关作用发出到位信号。需要提醒的是,既要保证不漏油,又要保证机械手动作灵活。过紧的密封,往往影响机械手的正常动作。这种液压缸
27、活塞驱动的机械手,每个动作结束之前均需设置缓冲机构,以保证机械手的工作平稳、可靠。缓冲结构可以是小孔节流,可以外接节流阀或是缓冲阀等。为了使机械手工作平稳可靠,除了要设有缓冲机构外,还要考虑尽可能减小机械手的惯量。圆柱体围绕旋转中心的运动惯量可由下式确定:J=J0+WR2/9.8 (N.m.s2) (1)式中 J0圆柱体绕其自身中心的惯量(Nms2)W圆柱体的重量(N)R旋转半径(m)由上式可见,惯量与物体重量成正比,与旋转半径的平方成正比。因此要尽可能采用密度小质量请的材料制造有关的零件,要尽可能的减小机械手的回转半径。由于液压驱动的机械手需要采用严格的密封,因此还需要缓冲机构。3.3 设计
28、计算3.3.1 手指夹紧力的计算:手指对工件的夹紧力可按下式计算:Nk1k2k3G kgf (2)式中k1安全系数,通常取1.22,我们取k1=1.8;k2动载系数,主要考虑惯性力的影响,可按k21a/g估算;a为机械手在搬运过程中的加速度,单位为m/s2,a9.8m/s2,g为重力加速度,所以这里k2=1;k3方位系数,按机械工程手册(第10卷)表56.2-3选取k3=0.91.1,我们取k3=1.0;G被夹持工件的重量,单位kg,这里G=11kg。则我们设计的机械手手指的夹紧力为:N1.811.011 kgf = 19.8 kgf 3.3.2 齿轮的设计齿轮传动按照两齿轮轴在机构中相对位置
29、的不同分为:两轴相互平行,两轴相交和两轴交错(即不平行也不相交)三类。用与平行轴传动的有;直齿、斜齿、圆柱齿轮、直齿、斜齿内齿轮、直齿、斜齿缘,这些齿轮有称为平面齿轮。用与相交轴传动的有:两轴线垂直相交和两轴线相交但不垂直的直齿、圆弧齿、延伸外摆线齿锥齿轮。用与交错轴传动的有:螺旋齿轮、蜗轮蜗杆和轴线偏置的锥齿轮(双曲线齿轮)这些齿轮又称空间齿轮。齿轮齿形曲线主要采用渐开线、其它还有摆线、圆弧线等,由于渐开线齿形容易制造,便于安装,所以大多数齿轮采用渐开线齿形。齿形标准:(摘自JB-100-60,JB304-62)轮传动是机械传动中最重要的传动之一,形式很多,应用广泛,传递的功率近十万千瓦,圆
30、周速度可达200m/s。齿轮传动按照两齿轮轴在机构中相对位置的不同二. 设计原则:所设计的齿轮传动在具体的工作情况下,必须具有足够的、相应的工作能力,以保证在整个工作寿命期间不致失效。目前设计一般使用的齿轮传动时,通常按保证齿根弯曲疲劳强度及保证齿面接触疲劳强度两准则进行计算。设计齿轮传动时,应使齿面具有较高的抗磨损、抗点蚀、抗胶合及抗塑性变形的能力,而齿根要有较高的抗折断的能力。因此,对齿轮材料性能的基本要求为:齿面要硬,齿芯要韧。常用的齿轮材料有钢、铸铁和一些非金属材料。三 设计步骤:整个回转头回转180换刀的运动是由回转液压缸8驱动,回转液压缸的输出轴上安装有齿轮99,齿轮41装在套筒上
31、,回转液压缸固定在立柱上。当回转液压缸动片转动时,齿轮99带动齿轮41转动,其转角的极限位置可由螺钉限定,同时有微动行程开关发出到位信号,其运动的计算公式为:41/99=Z2/(Z1+Z2) (3)式中41 -回转头的回转角度99-回转缸动片的转角Z1-齿轮41的齿数Z2-齿轮99的齿数由于在这里44=180,99=280,即:180/280= Z2/(Z1+Z2)解得:两齿轮的齿数比= Z2/Z1=1.8选定齿轮类型、精度等级、材料及齿数1)直齿圆柱齿轮传动。2)械手换刀时速度较高,我们选用6级精度(GB10095-88)。3)材料选择。选择小齿轮材料为40Cr(调质),硬度为280HBS,
32、大齿轮材料为45钢(调质)硬度为240HBS,二者材料硬度差为40HBS。4)选小齿轮齿数为Z1=24,大齿轮齿数Z2=Z1=1.824=43.2,取Z2=43。按齿面接触强度设计由设计公式进行计算,即:d1t2.32(KtT1/d)(1)/(ZE/H)21/3 (4)1)确定公式内各计算式数值试选载荷系数Kt=1.3计算小齿轮传递的转矩T1=95.5105P1/n1=95.510530/ 1460N.mm =1.962105N.mm选取齿宽系数d1材料的弹性影响系数ZE =189.8MPa1/2按齿轮齿面硬度查得小齿轮的接触疲劳强度极限 Hlim1 =600MPa;大齿轮的接触疲劳强度极限H
33、lim2=550MPa;由式10-13计算应力循环次数N1=60n1jLh=6014601(2830015)=6.307109N2=4.147109/3.2=1.296109 接触疲劳寿命系数KHN1 =0.91;K HN2=0.94计算接触疲劳许用应力取失效概率为1%,安全系数S=1,得H1= KHN1Hlim1/S=0.91600MPa=546MP H2= KHN2Hlim2/S=0.94550Mpa=517Mpa 2)计算试算小齿轮分度圆直径d1t,代入H中较小的值d1t2.32(KtT1/d)(1)/(ZE/H)21/3 =2.32(1.31.962105/1)(4.7+1)/4.7(
34、109.8/517)21/3 =80.445mm计算圆周速度vv=d1tn1/601000=80.4451460/601000m/s=6.15m/s (5)计算齿宽bb=dd1t=180.445=80.445 (6)计算齿宽与齿高之比b/h模数 mt=d1t/ Z1=80.445/24=3.352 (7)齿高 h=2.25mt=2.253.352mm=7.54mm (8)b/h=80.445/7.54=10.67 计算载荷系数根据v=6.15m/s,6级精度,由得动载荷系数:KV=1.02;直齿轮 ,假设KAFt/b100N/.由机械工程手册(第10卷)表10-3查得:KH=KF=1.2; (
35、9)由按机械工程手册(第10卷)表10-4查得使用系数:KA=1;由表10-4查的7级精度、小齿轮相对支承非对称分布时,KH=1.12+0.18(1+0.6d2)d2+0.2310-3b (10)将数据代入后得KH=1.12+0.18(1+0.612)12+0.2310-380.445=1.75 由b/h=10.67, KH=1.75,查图10-13得KF=1.35;故载荷系数:K=KAKVKHKH=11.021.21.75=2.142 按实际的载荷系数校正所算得的分度圆直径,由机械工程手册(第10卷)(10-10a)得d1= d1t(K/Kt)2/3=80.445(2.142/1.3)2/3
36、=95.01 (11)计算模数mm=d1/ Z1=95.01/24=3.95 按齿根弯曲强度设计由机械工程手册(第10卷)(10-5)得弯曲强度计算的设计公式为m(2KT1/d Z12)(YFaYSa/F)1/3 (12)1) 确定公式内的各计算数值由图10-20c查得小齿轮的弯曲疲劳强度极限:FE1=500Mpa大齿轮的弯曲疲劳强度极限:FE2=380Mpa查得弯曲疲劳寿命系数:KFN1=0.85KFN2=0.88计算弯曲疲劳许用应力取弯曲疲劳安全系数:S=1.4由式得F1= KFN1/FE1=0.85500/1.4MPa=303.57Mpa (13)F2= KFN2/FE2=0.88380
37、/1.4MPa=238.86Mpa (14)计算载荷系数K=KAKVKFKF=11.021.21.35=1.944 (15)查取齿形系数由机械工程手册(第10卷)表10-5 查得:YFa1=2.65YFa2=2.226查取应力校正系数由机械工程手册(第10卷)表10-5查得:YSa1 =1.58YSa2=1.764计算大、小齿轮的YFaYSa/F并加以比较YFa1YSa1/F1 =2.651.58/303.57=0.01379 (16)YFa2YSa2/F2=2.2261.764/238.86=0.01644 大齿轮的数值大。2)设计计算m(21.9449.948105)/12420.1644
38、1/3=2.792对比计算结果,由齿面接触疲劳强度计算的模数大于由齿根弯曲疲劳强度计算的模数,由于齿轮模数的大小主要取决于弯曲强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力,仅与齿轮直径(即模数与齿数的乘积)有关,可取由弯曲强度算得的模数2.792并就近圆整为标准值m=3。按接触强度算得的分度圆直径d1=95.01,算出小齿轮齿数:小齿轮齿数:z1= d1/m=95.01/3=32大齿轮齿数:z2=z1=1.832=57.6取z2=58这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,并做到结构紧凑,避免浪费。4.几何尺寸计算分度圆直径d1=z1m=323=9
39、6d2=z2m=583=1742)计算中心距a= (d1+d2)/2=(96+174)/2=134 (17)3)计算齿轮宽度b=dd1=196=96验算 Ft =2T1/d1=21.965105/96N=4087.5N (18) KAFt/b=14087.5/96N/=42.58 N/100 N/,合适。另外,机械手臂的伸出和缩回是通过齿轮齿条传动进行的,其设计过程与此相似,由于受篇幅的限制,这里就不再叙述设计步骤。3.3.3 轴的设计轴是组成机械的一个常用的重要零件,它支持着其他转动零件如齿轮、蜗轮等零件回转并传递转矩,它由轴系支持、轴承则安放在箱体或机架上面,轴承、轴和轴上零件形成一个组成
40、体,称为轴系。组成轴系的主要零件-轴、轴承、联轴器等称为轴系零件。轴设计的主要问题:轴的设计主要包括:轴的材料选择、结构设计、轴的强度、刚度和振动稳定性计算等,设计轴的主要步骤如下:(1)根据机械传动总体布局拟定轴上零件的位置。(2)选择轴的材料。(3)初步估计轴的直径。(4)进行轴的结构设计。(5)进行轴的强度、刚度、振动计算。(6)校核键、轴承、联轴器等的强度或寿命。(7)绘出轴系的装配图、零件图等。轴是组成机械的一个重要零件。它支承着其他转动件回转并传递转矩,同时它又通过轴承和机架联接。所有轴上零件都围绕轴心线作回转运动,形成了一个以轴为基准的组合体轴系部件。轴的总类:轴按受载情况分为转
41、轴、心轴和传动轴,其中转轴既支承传动机件又传递力,即承受弯矩和扭矩两种作用;心轴只起支承旋转件作用而不传递动力,即只承受弯矩作用;传动轴主要传递动力,即主要承受扭矩作用。按结构形状分为:光轴、阶梯轴、实心轴、空心轴等。按几何轴线形状分为:直轴、曲轴、钢丝软轴。设计轴时应考虑多方面的因素和要求,其中主要问题是轴的选材、结构、强度和刚度。对于高速轴还应考虑震动稳定性问题。轴的常用材料轴的材料种类很多,设计时主要根据对轴的强度、刚度、耐磨性等要求,以及为实现这些要求而采用的热处理方式,同时考虑制造工艺问题加以选用,力求经济合理。轴的常用材料是35、45、50优质碳素钢,对于受载较小或不太重要的轴,也
42、可以用A3、A5等普通碳素钢。对于受力较大,轴的尺寸和重量受到限制,以及有某些特殊要求的轴,可采用合金钢。根据工作条件要求,轴可在加工前或加工后经过整体或表面处理,以及表面强化处理(如喷丸、辊压、氮化等),以提高其强度(尤其疲劳强度)和耐磨、耐腐蚀等性能。轴一般由轧制圆钢或锻件经切削加工制造。轴的直径较小,可用圆钢棒制造;对于重要的,大直径或阶梯直径变化较大的轴,采用锻坯。为节约金属和提高工艺性,直径大的轴还可以制成空心的,并且带有焊接的或者锻造的凸缘。对于形状复杂的轴,可采用铸造。轴的结构决定于受载情况、轴上零件的布置和固定方式、轴承的类型和尺寸、轴的毛坯、制造和装配工艺及安装、运输等条件。
43、轴的结构应是尽量减小应力集中,受力合理,有良好工艺性,并使轴上零件定位可靠,装拆方便。对于要求刚度大的轴,还应在结构上考虑减小轴的变形。零件与轴的固定或联接方式,随零件的作用而异。一般情况下,为了保证零件在轴上具有固定的工作位置,需从轴向和周向加以固定。轴的设计过程我们设计的驱动装置中所采用的轴主要作用是既可以在插刀、拔刀时带动整个机械手左右移动,又可在交换刀具时带动回转头转动,由于这两个动作是分离的,我们在这里采用花键轴。该花键轴左端与回转头固定联接,两个花键套筒通过轴承安装在机床立柱上的回转座内,齿轮41通过花键套筒安装在花键轴的右端。当回转缸通入压力油而使转轴转动时,通过传动齿轮99带动齿轮41转动,这样,花键轴即可带动回转头转动,又由于直线液压缸活塞杆端部有联接件与花键轴相连,当活塞杆因油缸进入高压油而向左或向右运动时,通过联接件即可带动花键轴作直线运动,从而带动回转头及机械臂作向左或向右运动。已知条件: