《高速逆流色谱 [高速逆流色谱在天然产物分离中的应用] .docx》由会员分享,可在线阅读,更多相关《高速逆流色谱 [高速逆流色谱在天然产物分离中的应用] .docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高速逆流色谱 高速逆流色谱在天然产物分离中的应用 摘要:高速逆流色谱是一种连续液-液色谱技术,具有无固相载体的优点。现将近年高速逆流色谱在自然产物分别中的应用作一介绍。 关键词:高速逆流色谱;自然产物;应用 中图分类号:O657.7文献标识码:A文章编号:1672-979X(2007)05-0024-04 Application of High-speed Counter-current Chromatography in Isolation of Natural Products ZHAO Ying (School of Pharmaceutical Sciences, Shandong U
2、niversity, Jinan 250012, China) Abstract:High-speed countercurrent chromatography (HSCCC) is one kind of continuous liquid-liquid distribution chromatography with the unique feature of eliminating the use of a solid support. This paper reviews the application of HSCCC in the isolation of natural pro
3、ducts. Key words:high-speed countercurrent chromatography; natural product; application 20世纪80年头,美国国立卫生探讨院(National Institutes of Health,NIH)Ito等在液-液安排色谱的基础上独创了高速逆流色谱(high-speed countercurrent chromatography,HSCCC)。HSCCC技术主要有离子对逆流色谱(ion-pair countercurrent chromatography)、pH区带逆流色谱(pH-zone-refining c
4、ountercurrent chromatography)及多维逆流色谱(multidimensional countercurrent chromatography)1。HSCCC是一项高效快速的液-液安排色谱技术,由于该色谱无需固相载体支持,避开了因不行逆吸附而引起的样品损失、变性等问题,特殊适用于分别(单离)极性物质和用其他分别方法易引起结构改变的物质。随着方法的改进2,用该法进行自然产物分别制备的量和纯度都有了极大的提高,国内外已广泛用于生物碱类、黄酮类、苷类等化合物的分别。现对HSCCC及其在自然产物分别中的应用作一介绍。 1HSCCC在自然产物分别中的应用 1.1生物碱类 Liu等
5、3用HSCCC,以正己烷-乙酸乙酯-甲醇-水(5:5:7:5,v/v)为溶剂体系,从吴茱萸Evodia rutaecarpa (Juss.) Benth.分别纯化得到5个生物碱类化合物,纯度分别为98.7,98.4,96.9,98.0和97.2。蒋凯等4用HSCCC,以氯仿-甲醇-0.2 mol/ L HCl(10:3:3,v/v)为溶剂系统,从黄花乌头Aconitum coreanum (Ll.) Rapaics分别并鉴定了8个C20二萜生物碱。 1.2黄酮类 Zhou等5用HSCCC从短瓣金莲花(Trollius ledebouri Reichb.)分别得到2个黄酮苷类、1个未知化合物(纯
6、度均在97.0%以上)和1个部分纯化的组分(纯度为85.1,随后用半制备型HPLC纯化),其溶剂体系为乙酸乙酯-正丁醇-水(2:1:3,v/v)。土茯苓为百合科菝葜属植物光叶菝葜(Smilax glabra Roxb.)的干燥根茎,Du等6用制备型HSCCC对落新妇苷进行分别纯化,一次分别粗提物1.5 g,以正己烷-正丁醇-水(1:1:2,v/v)为溶剂体系,得到落新妇苷和异落新妇苷。利用HSCCC分别的其他黄酮类化合物见表1。 表 1利用HSCCC分别黄酮类化合物 1.3倍半萜 木香是菊科植物木香(Aucklandia lappa Decne)的干燥根,其中广木香内酯和去氢-姜黄烯具有抗菌、
7、抗病毒和止痛等作用。Li等16用制备型HSCCC,以石油醚-甲醇-水(5:6.5:3.5,v/v)的上相作为固定相,胜利分别纯化了广木香内酯和去氢-姜黄烯,纯度分别为100和99.6。Ma等17利用HSCCC从新疆一枝蒿(Artemisia rupestris L.)二氯甲烷提取物中分别得到一枝蒿酮酸,纯度大于98.0,其中以正己烷-乙酸乙酯-甲醇-水(6:4:3.5:6.5, v/v)的上相和0.5的醋酸为固定相。Yan等18利用HSCCC从姜科植物温郁金(Curcuma wenyujin)根茎的挥发油中胜利分别得到吉玛酮和莪术二酮,溶剂系统为石油醚-乙醇-乙醚-水(5:4:0.5:1,v/
8、v),纯度大于95.0。 1.4醌类 紫草(Lithospermum erythrorhizon Sieb. et Zucc.)含萘醌类色素:紫草素、乙酰紫草素等,Lu等19用HSCCC,以正己烷-乙酸乙酯-乙醇-水(16:14:14:5,v/v)为溶剂体系,从52 mg紫草粗提物(含38.9紫草素)中分别纯化得到紫草素19.6 mg(纯度为98.9),回收率为96.9,完成一次分别用时200 min。何首乌为蓼科植物何首乌(Polygonum multiflorum Thunb.)的块根,主要含有蒽醌类、二苯乙烯苷等活性成分,Yao等20利用HSCCC分别其乙醚、正丁醇和水的提取物,流淌相分
9、别为正己烷-乙酸乙酯-甲醇-水(3:7:5:5,v/v),乙酸乙酯-甲醇-水(50:1:50,v/v)和乙酸乙酯-正丁醇-水(20:1:20,v/v)的下相,共得到9个化合物,纯度均大于97.0,其中5个是蒽醌类化合物。 1.5苯丙酸类 丹参为唇形科植物丹参(Salvia miltiorrhiza Bge.)的干燥根及根茎,其所含丹酚酸B具有剧烈的抗氧化和清除氧自由基的活性。Chen等21用HSCCC分别纯化丹参水溶性成分丹酚酸类物质,制备丹酚酸B化学比照品,其纯度为98.6,采纳的溶剂体系为正己烷-乙酸乙酯-水-甲醇(1.5:5:5:1.5),上相做固定相,下相做流淌相。 1.6香豆素类 近
10、来探讨表明,香豆素类及结构相关的化合物具有抑制HIV的活性,此类化合物可能对AIDS有治疗作用。白芷为伞形科植物白芷Angelica dahurica(Fisch.ex Hoffm.)Benth.et Hook. f.的干燥根,Wei等22利用制备型HSCCC从白芷中胜利分别纯化了戊烯氧呋豆素、氧化前胡内酯和异欧前胡素,纯度大于98.0,采纳的溶剂体系为正己烷-乙酸乙酯-甲醇-水(1:1:1:1和5:5:4.5:5.5,v/v)。Liu等利用制备型HSCCC,以石油醚-乙酸乙酯-甲醇-水(5:5:7:4,v/v)为溶剂体系,从紫花前胡(Radix Peucedani)中分别纯化了6个香豆素类化
11、合物,纯度分别为88.3 ,98.0 ,94.2 ,97.1 ,97.8 和98.4 ,若利用HSCCC再作一次分别,溶剂体系为石油醚-乙酸乙酯-甲醇-水(5:5:4:5,v/v),紫花前胡苷元(nodakenetin)的纯度可达到99.423。Liu等24还用HSCCC,以正丁醇-甲醇-0.5%醋酸(5:1.5:5,v/v)为溶剂体系,从Cortex fraxinus中分别纯化了4个香豆素类化合物,纯度分别为97.6,99.5,97.2和98.7。 1.7苷类 仙茅(Curculigo orchioides Gaertn.)是中医常用的补肾壮阳药物,具有很多生物活性,如抗骨质疏松、抗苍老、抗
12、炎症反应、增加免疫力等。Peng等25利用制备型HSCCC从仙茅中胜利分别纯化了仙茅苷和仙茅苷乙,纯度分别为96.5和99.4,并探讨了一些参数,包括溶剂体系为乙酸乙酯-乙醇-水(5:1:5,v/v),分别温度、流淌相流速和仪器的转速。 Zhou等26用制备型HSCCC对栀子(Gardenia jasminoides Ellis)的果实京尼平苷进行了大规模的分别纯化,一次分别粗提物1 g,溶剂体系为乙酸乙酯-正丁醇-水(2:1.5:3,v/v),得到京尼平苷的纯度大于98。Li等27用HSCCC对连翘(Forsythia suspensa(Thunb.)Vahl)的果实50.0乙醇粗提物进行了
13、分别纯化,以正己烷-乙酸乙酯-甲醇-水(1:9:1:9,v/v)为溶剂体系,得到连翘苷的纯度大于98.6。 1.8木脂素类 板蓝根(Radix Isatidis)为十字花科植物菘蓝(Isatis indigotica Fort.)的干燥根,有清热解毒、凉血利咽功能,有抗菌、抗病毒、抗内毒素和抗肿瘤等药理作用。Peng等28用制备型HSCCC从板蓝根胜利地分别纯化了clemastanin B和indigoticoside A,纯度分别为94.6和99.0,其中溶剂体系为乙酸乙酯-正丁醇-水(2:7:9,v/v)。Peng等29还用制备型HSCCC,以正己烷-乙酸乙酯-甲醇-水(1:0.9:1:0
14、.9,v/v)为溶剂体系,对经D-101大孔吸附树脂处理的北五味子Schisandra chinensis(Turcz.)Baill.粗提物进行了分别纯化,得到五味子素和戈米辛A,纯度均大于99.0,用时小于3 h。Huang等30用HSCCC,以正己烷-甲醇-水(35:30:3,v/v)为溶剂体系,从北五味子的石油醚提取物中胜利分别纯化了去氧五味子素和-五味子素,纯度分别为98.0和96.0。 1.9其他 腐败菌素为亲脂性环肽类化合物,具有多种生物活性,其杀虫活性和植物毒性广为人知,还有细胞毒性,在医学上可能有重大意义。Seger等31首先利用液液提取和Sephadex LH-20浓缩得到粗
15、提物,再利用HSCCC分别纯化得到腐败菌素A、B和E,纯度大于98.0,总收率大于40.0%。 2结论和展望 Ito32为了帮助科学家们更好的应用HSCCC,总结了很多运用阅历。HSCCC分别效果与仪器参数和溶剂体系的选择关系亲密,其中溶剂体系的选择是至关重要的一步,占总工作量的90.0%。溶剂体系应符合以下要求:(1)样品在溶剂体系中性质稳定且溶解度足够大;(2)溶剂体系的两相有适当的体积比,以免溶剂奢侈;(3)样品在溶剂体系中有合适的安排系数K(0.5K1.0);(4)溶剂体系应保证适当的固定相保留值。 HSCCC的优点有:溶剂体系的组成与配比敏捷,从理论上讲可适用于任何极性范围的样品分别
16、;仪器操作简洁,对样品的预处理要求低;避开了有效成分被固相载体的不行逆性吸附,理论上样品的回收率可达100;峰的保留相对标准偏差小于2,重现性好;有机溶剂消耗少,无损失、无污染;分别效率高和大制备量分别等。与制备HPLC相比,HSCCC不存在色谱柱污染的问题,且进样量较大,最多可达几g,是HPLC的l04l05倍;而与常压和低压色谱相比,HSCCC的分别实力强,有些样品经过一次分别就可以得到1个甚至多个单体,并且分别时间也较短,一般几小时就可以完成一次分别。 自HSCCC问世以来,在自然产物的提取纯化中发挥着很大的优势,应用前景非常广袤。HSCCC的任何关键性进展都有可能对自然产物的探讨产生深
17、远的影响,是值得关注的探讨领域。目前HSCCC主要用于定性、分别制备,定量分析少见报道,随着探讨的深化,HSCCC也会用于定量分析。例如高速逆流色谱-质谱(HSCCC-MS)联用,这将为HSCCC开拓更加广袤的应用领域。 参考文献 1郅文波,顾铭,宋江楠,等. 高速逆流色谱技术在生物大分子分别纯化中的应用J. 生物技术通讯,2005,16(1):96-99. 2王凤美,陈军辉,李磊,等. 高速逆流色谱法分别制备丹酚酸BJ. 自然产物探讨与开发,2006,18(1):100-104. 3Liu R M, Chu X, Sun A L, et al. Preparative isolation a
18、nd purification of alkaloids from the Chinese medicinal herb Evodia rutaecarpa (Juss.) Benth by high-speed counter-current chromatography J. J Chromatogr A, 2005, 1074(1-2): 139-144. 4蒋凯,杨春华,刘静涵,等. 黄花乌头中Hetisine型生物碱的高速逆流色谱分别与结构鉴定J. 药学学报,2006,41(2):128-131. 5Zhou X, Peng J Y, Fan G R, et al. Isolatio
19、n and purification of flavonoid glycosides from Trollius ledebouri using high-speed counter-current chromatography by stepwise increasing the flow-rate of the mobile phase J. J Chromatogr A, 2005, 1092(1): 216-221. 6Du Q, Li L, Jerz G. Purification of astilbin and isoastilbin in the extract of smila
20、x glabra rhizome by high-speed counter-current chromatography J. J Chromatogr A, 2005, 1077(1): 98-101. 7Peng J Y, Yang G J, Fan G R, et al. Preparative isolation and separation of a novel and two known flavonoids from Patrinia villosa Juss by high-speed counter-current chromatography J. J Chromatog
21、r A, 2005, 1092(2): 235-240. 8Peng J Y, Fan G R, Hong Z Y, et al. Preparative separation of isovitexin and isoorientin from Patrinia villosa Juss by high-speed counter-current chromatography J. J Chromatogr A, 2005, 1074(1-2): 111-115. 9Wang X, Li F W, Zhang H X, et al. Preparative isolation and pur
22、ification of polymethoxylated flavones from Tangerine peel using high-speed counter-current chromatography J. J Chromatogr A, 2005, 1090(1-2): 188-192. 10 Zhao M B, Ito Y, Tu P F. Isolation of a novel flavanone 6-glucoside from the flowers of Carthamus tinctorium (Honghua) by high-speed counter-curr
23、ent chromatography J. J Chromatogr A, 2005, 1090(1-2): 193-196. 11 Ma C J, Li G S, Zhang D L, et al. One step isolation and purification of liquiritigenin and isoliquiritigenin from Glycyrrhiza uralensis Risch. using high-speed counter-current chromatography J. J Chromatogr A, 2005, 1078(1-2): 188-1
24、92. 12 Wang X, Cheng C G, Sun Q L, et al. Isolation and purification of four flavonoid constituents from the lowers of Paeonia suffruticosa by high-speed counter-current chromatography J. J Chromatogr A, 2005, 1075(1-2): 127-131. 13 Li H B, Chen F. Isolation and purification of baicalein, wogonin an
25、d oroxylin A from the medicinal plant Scutellaria baicalensis by high-speed counter-current chromatography J. J Chromatogr A, 2005, 1074(1-2): 107-110. 14 Wu S J, Sun A L, Liu R M. Separation and purification of baicalin and wogonoside from the Chinese medicinal plant Scutellaria baicalensis Georgi
26、by high-speed counter-current chromatography J. J Chromatogr A, 2005, 1066(1-2): 243-247. 15 Liu R M, Li A F, Sun A L, et al. Preparative isolation and purification of three flavonoids from the Chinese medicinal plant Epimedium koreamum Nakai by high-speed counter-current chromatography J. J Chromat
27、ogr A, 2005, 1064(1): 53-57. 16 Li A F, Sun A L, Liu R M. Preparative isolation and purification of costunolide and dehydrocostuslactone from Aucklandia lappa Decne by high-speed counter-current chromatography J. J Chromatogr A, 2005, 1076(1-2): 193-197. 17 Ma Y M, Aisha H A, Liao L X, et al. Prepar
28、ative isolation and purification of rupestonic acid from the Chinese medicinal plant Artemisia rupestris L. by high-speed counter-current chromatography J. J Chromatogr A, 2005, 1076(1-2): 198-201. 18 Yan J Z,Chen G,Tong S Q,et al. Preparative isolation and purification of germacrone and curdione fr
29、om the essential oil of the rhizomes of Curcuma wenyujin by high-speed counter-current chromatography J. J Chromatogr A, 2005, 1070(1-2): 207-210. 19 Lu H T, Jiang Y, Chen F. Preparative high-speed counter-current chromatography for purification of shikonin from the Chinese medicinal plant Lithosper
30、mum erythrorhizon J. J Chromatogr A, 2004, 1023(1): 159-163. 20 Yao S H, Li Y, Kong L Y. Preparative isolation and purification of chemical constituents from the root of Polygonum multiflorum by high-speed counter-current chromatography J. J Chromatogr A, 2006, 1115(1-2): 64-71. 21 Chen J H, Wang F
31、M, Frank Sen-Chun Lee, et al. Separation and identification of water-soluble salvianolic acids from Salvia miltiorrhiza Bunge by high-speed counter-current chromatography and ESI-MS analysis J. Talanta, 2006, 69(1): 172-179. 22 Wei Y, Ito Y. Preparative isolation of imperatorin, oxypeucedanin and is
32、oimperatorin from traditional Chinese herb“bai zhi”Angelica dahurica (Fisch. ex Hoffm) Benth. et Hook using multidimensional high-speed counter-current chromatography J. J Chromatogr A, 2006, 1115(1-2): 112-117. 23 Liu R M, Sun Q H, Shi Y R, et al. Isolation and purification of coumarin compounds fr
33、om the root of Peucedanum decursivum (Miq.) Maxim by high-speed counter-current chromatography J. J Chromatogr A, 2005, 1076(1-2): 127-132. 24 Liu R M, Sun Q H, Su A L, et al. Isolation and purification of coumarin compounds from Cortex fraxinus by high-speed counter-current chromatography J. J Chro
34、matogr A, 2005, 1072(2): 195-199. 25 Peng J Y, Jiang Y Y, Fan G R, et al. Optimization suitable conditions for preparative isolation and separation of curculigoside and curculigoside B from Curculigo orchioides by high-speed counter-current chromatography J. Sep Purif Technol, 2006, 52(1): 22-28. 26
35、 Zhou T T, Fan G R, Hong Z Y, et al. Large-scale isolation and purification of geniposide from the fruit of Gardenia jasminoides Ellis by high-speed counter-current chromatography J. J Chromatogr A, 2005, 1100(1): 76-80. 27 Li H B, Chen F. Preparative isolation and purification of phillyrin from the
36、 medicinal plant Forsythia suspensa by high-speed counter-current chromatography J. J Chromatogr A, 2005, 1083(1-2): 102-105. 28 Peng J Y, Fan G R, Wu Y T. Isolation and purification of clemastanin B and indigoticoside A from Radix Isatidis by high-speed counter-current chromatography J. J Chromatog
37、r A, 2005, 1091(1-2): 89-93. 29 Peng J Y, Fan G R, Qu L P, et al. Application of preparative high-speed counter-current chromatography for isolation and separation of schizandrin and gomisin A from Schisandra chinensis J. J Chromatogr A, 2005, 1082(2): 203-207. 30Huang T H, Shen P N, Shen Y J. Prepa
38、rative separation and purification of deoxyschisandrin and ?schisandrin from Schisandra chinensis (Turcz.) Baill by high-speed counter-current chromatography J. J Chromatogr A, 2005, 1066(1-2): 239-242. 31 Seger C, Eberhart K, Sturm S, et al. Apolar chromatography on Sephadex LH-20 combined with hig
39、h-speed counter-current chromatography: High yield strategy for structurally closely related analytes-Destruxin derivatives from Metarhizium anisopliae as a case study J. J Chromatogr A, 2006, 1117(1): 67-73. 32 Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography J. J Chromatogr A, 2005, 1065(2): 145-168. 注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。”