BP神经网络matlab实例(简单而经典)(7页).doc

上传人:1595****071 文档编号:38937539 上传时间:2022-09-06 格式:DOC 页数:6 大小:230KB
返回 下载 相关 举报
BP神经网络matlab实例(简单而经典)(7页).doc_第1页
第1页 / 共6页
BP神经网络matlab实例(简单而经典)(7页).doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《BP神经网络matlab实例(简单而经典)(7页).doc》由会员分享,可在线阅读,更多相关《BP神经网络matlab实例(简单而经典)(7页).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-BP神经网络matlab实例(简单而经典)-第 6 页1、BP网络构建(1)生成BP网络:由维的输入样本最小最大值构成的维矩阵。:各层的神经元个数。:各层的神经元传递函数。:训练用函数的名称。(2)网络训练(3)网络仿真BP网络的训练函数训练方法训练函数梯度下降法traingd有动量的梯度下降法traingdm自适应lr梯度下降法traingda自适应lr动量梯度下降法traingdx弹性梯度下降法trainrpFletcher-Reeves共轭梯度法traincgfPloak-Ribiere共轭梯度法traincgpPowell-Beale共轭梯度法traincgb量化共轭梯度法train

2、scg拟牛顿算法trainbfg一步正割算法trainossLevenberg-MarquardttrainlmBP网络训练参数训练参数参数介绍训练函数net.trainParam.epochs最大训练次数(缺省为10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.goal训练要求精度(缺省为0)traingd、traingdm、traingda、traingdx、trainrp、traincgf、tra

3、incgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.lr学习率(缺省为0.01)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.max_fail最大失败次数(缺省为5)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trai

4、nbfg、trainoss、trainlmnet.trainParam.min_grad最小梯度要求(缺省为1e-10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.show显示训练迭代过程(NaN表示不显示,缺省为25)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、train

5、oss、trainlmnet.trainParam.time最大训练时间(缺省为inf)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.mc动量因子(缺省0.9)traingdm、traingdxnet.trainParam.lr_inc学习率lr增长比(缺省为1.05)traingda、traingdxnet.trainParam.lr_dec学习率lr下降比(缺省为0.7)traingda、traing

6、dxnet.trainParam.max_perf_inc表现函数增加最大比(缺省为1.04)traingda、traingdxnet.trainParam.delt_inc权值变化增加量(缺省为1.2)trainrpnet.trainParam.delt_dec权值变化减小量(缺省为0.5)trainrpnet.trainParam.delt0初始权值变化(缺省为0.07)trainrpnet.trainParam.deltamax权值变化最大值(缺省为50.0)trainrpnet.trainParam.searchFcn一维线性搜索方法(缺省为srchcha)traincgf、train

7、cgp、traincgb、trainbfg、trainossnet.trainParam.sigma因为二次求导对权值调整的影响参数(缺省值5.0e-5)trainscgnet.trainParam.lambdaHessian矩阵不确定性调节参数(缺省为5.0e-7)trainscgnet.trainParam.men_reduc控制计算机内存/速度的参量,内存较大设为1,否则设为2(缺省为1)trainlmnet.trainParam.mu的初始值(缺省为0.001)trainlmnet.trainParam.mu_dec的减小率(缺省为0.1)trainlmnet.trainParam.m

8、u_inc的增长率(缺省为10)trainlmnet.trainParam.mu_max的最大值(缺省为1e10)trainlm2、BP网络举例举例1、%traingdclear;clc;P=-1 -1 2 2 4;0 5 0 5 7;T=-1 -1 1 1 -1;%利用minmax函数求输入样本范围net = newff(minmax(P),5,1,tansig,purelin,trainrp);net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;n

9、et,tr=train(net,P,T);net.iw1,1%隐层权值net.b1%隐层阈值net.lw2,1%输出层权值net.b2%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。样本数据:输入X输出D输入X输出D输入X输出D-1.0000-0.9602-0.30000.13360.40000.3072-0.9000-0.5770-0.2000-0.20130.50000.3960-0.8000-0.0729-0.1000-0.43440.60000.3449-0.70000.37710-0.50000.70000.1816-

10、0.60000.64050.1000-0.39300.8000-0.3120-0.50000.66000.2000-0.16470.9000-0.2189-0.40000.46090.3000-0.09881.0000-0.3201解:看到期望输出的范围是,所以利用双极性Sigmoid函数作为转移函数。程序如下:clear;clc;X=-1:0.1:1;D=-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609. 0.1336 -0.2013 -0.4344 -0.5000 -0.3930 -0.1647 -.0988. 0.3072 0.396

11、0 0.3449 0.1816 -0.312 -0.2189 -0.3201;figure;plot(X,D,*); %绘制原始数据分布图(附录:1-1)net = newff(-1 1,5 1,tansig,tansig);net.trainParam.epochs = 100; %训练的最大次数net.trainParam.goal = 0.005; %全局最小误差net = train(net,X,D); O = sim(net,X); figure; plot(X,D,*,X,O); %绘制训练后得到的结果和误差曲线(附录:1-2、1-3)V = net.iw1,1%输入层到中间层权值

12、theta1 = net.b1%中间层各神经元阈值W = net.lw2,1%中间层到输出层权值theta2 = net.b2%输出层各神经元阈值所得结果如下:输入层到中间层的权值: 中间层各神经元的阈值: 中间层到输出层的权值: 输出层各神经元的阈值:举例3、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。样本数据:输入X输出D输入X输出D输入X输出D00448211539322621043371解:看到期望输出的范围超出,所以输出层神经元利用线性函数作为转移函数。程序如下:clear; clc;X = 0 1 2 3 4 5 6 7 8 9 10;D = 0 1

13、2 3 4 3 2 1 2 3 4;figure;plot(X,D,*); %绘制原始数据分布图net = newff(0 10,5 1,tansig,purelin)net.trainParam.epochs = 100;net.trainParam.goal=0.005;net=train(net,X,D);O=sim(net,X);figure;plot(X,D,*,X,O); %绘制训练后得到的结果和误差曲线(附录:2-2、2-3)V = net.iw1,1%输入层到中间层权值theta1 = net.b1%中间层各神经元阈值W = net.lw2,1%中间层到输出层权值theta2

14、= net.b2%输出层各神经元阈值所得结果如下:输入层到中间层的权值:中间层各神经元的阈值: 中间层到输出层的权值: 输出层各神经元的阈值:问题:以下是上证指数2009年2月2日到3月27日的收盘价格,构建一个三层BP神经网络,利用该组信号的6个过去值预测信号的将来值。日期价格日期价格2009/02/022011.6822009/03/022093.4522009/02/032060.8122009/03/032071.4322009/02/042107.7512009/03/042198.1122009/02/052098.0212009/03/052221.0822009/02/0621

15、81.2412009/03/062193.0122009/02/092224.7112009/03/092118.7522009/02/102265.1612009/03/102158.5722009/02/112260.8222009/03/112139.0212009/02/122248.0922009/03/122133.8812009/02/132320.7922009/03/132128.8512009/02/162389.3922009/03/162153.2912009/02/172319.4422009/03/172218.3312009/02/182209.8622009/03/182223.7312009/02/192227.1322009/03/192265.7612009/02/202261.4822009/03/202281.0912009/02/232305.7822009/03/232325.4812009/02/242200.6522009/03/242338.4212009/02/252206.5722009/03/252291.5512009/02/262121.2522009/03/262361.7012009/02/272082.8522009/03/272374.44

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁