《高考卷 06湖南高考试卷 数学(文史类).doc》由会员分享,可在线阅读,更多相关《高考卷 06湖南高考试卷 数学(文史类).doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2006年湖南高考试卷 科目:数学(文史类)(试题卷)注意事项:1答题前,考生务必将自己的姓名、准考证号写在答题卡和该试题卷的封面上,并认真核对条形码上的姓名、准考证号和科目。2考生作答时,选择题和非选择题均须作在答题卡上,在草稿纸和本试卷上答题无效。考生在答题卡上按如下要求答题:(1)选择题部分请用铅笔把应题目的答案标号所在方框涂黑,修改时用橡皮擦干净,不留痕迹。(2)非选择题部分(包括填空题和解答题)请按题号用0.5毫米黑色墨水签字笔书写,否则作答无效。 (3)保持字体工整、笔迹清晰、卡面清洁、不折叠。3考试结束后,将本试题卷和答题卡一并交回。4. 本试卷共5页。如缺页,考生须声明,否则后
2、果自负。 姓名准考证号绝密启用前数学(文史类)本试题卷他选择题和非选择题(包括填空题和解答题)两部分. 选择题部分1至2页. 非选择题部分3至5页. 时量120分钟. 满分150分.参考公式:如果事件、互斥,那么如果事件、相互独立,那么如果事件在一次试验中发生的概率是,那么次独立重复试验中恰好发生次的概率是 球的体积公式 ,球的表面积公式,其中表示球的半径一选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1函数的定义域是 A(0,1B. (0,+)C. (1,+)D. 1,+)2已知向量若时,;时,则 A B. C. D. 3. 若的展开式
3、中的系数是80,则实数a的值是 A-2 B. C. D. 24过半径为2的球O表面上一点A作球O的截面,若OA与该截面所成的角是60则该截面的面积是 A B. 2 C.3 D. 5“a=1”是“函数在区间1,)上为增函数”的 A充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件6在数字1,2,3与符号,五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是A6 B. 12 C. 18 D. 247圆上的点到直线的最大距离与最小距离的差是A36 B. 18 C. D. 8设点P是函数的图象C的一个对称中心,若点P到图象C的对称轴上的距离的最小值,则的最小正周期是
4、A2 B. C. D. 9过双曲线M:的左顶点A作斜率为1的直线l,若l与双曲线M的两条渐近线分别相交于点B、C,且,则双曲线M的离心率是A B. C. D. ABOM图110. 如图1:OMAB,点P由射线OM、线段OB及AB的延长线围成的阴影区域内(不含边界).且,则实数对(x,y)可以是AB. C. D. 二填空题:本大题共5小题,每小题分,共20分,把答案填在答题上部对应题号的横上.11. 若数列满足:,2,3.则.12. 某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴
5、趣班的平均成绩是分.13. 已知则的最小值是.14. 过三棱柱 ABCA1B1C1 的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有条.15. 若是偶函数,则a= .三解答题:本大题共小题,共80分. 解答应写出文字说明,证明过程或演算步骤.16.(本小题满分分)已知求的值.17.(本小题满分分)某安全生产监督部门对5家小型煤矿进行安全检查(简称安检). 若安检不合格,则必须整改. 若整改后经复查仍不合格,则强制关闭. 设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):()恰好有两家煤矿必须整改的
6、概率;()某煤矿不被关闭的概率;()至少关闭一家煤矿的概率.18.(本小题满分4分)QBCPAD图2如图2,已知两个正四棱锥P-ABCD与Q-ABCD的高都是2,AB=4. ()证明PQ平面ABCD; ()求异面直线AQ与PB所成的角; ()求点P到平面QAD的距离.19.(本小题满分14分)已知函数.()讨论函数的单调性;()若曲线上两点A、B处的切线都与y轴垂直,且线段AB与x轴有公共点,求实数a的取值范围.20.(本小题满分14分)在m(m2)个不同数的排列P1P2Pn中,若1ijm时PiPj(即前面某数大于后面某数),则称Pi与Pj构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆
7、序数. 记排列的逆序数为an,如排列21的逆序数,排列321的逆序数.()求a4、a5,并写出an的表达式;()令,证明,n=1,2,.21.(本小题满分14分)已知椭圆C1:,抛物线C2:,且C1、C2的公共弦AB过椭圆C1的右焦点.()当轴时,求p、m的值,并判断抛物线C2的焦点是否在直线AB上;()若且抛物线C2的焦点在直线AB上,求m的值及直线AB的方程.参考答案:110:DCDAABCBCDC11., 12. 85, 13. 5 ,14. 6 ,15. -3 .1函数的定义域是,解得x1,选D.2向量若时, ;时,选C.3的展开式中的系数=x3, 则实数的值是2,选D4过半径为2的球
8、O表面上一点A作球O的截面,若OA与该截面所成的角是60,则截面圆的半径是R=1,该截面的面积是,选A.5若“”,则函数=在区间上为增函数;而若在区间上为增函数,则0a1,所以“”是“函数在区间上为增函数”的充分不必要条件,选A.6在数字1,2,3与符号“”,“”五个元素的所有全排列中,先排列1,2,3,有种排法,再将“”,“”两个符号插入,有种方法,共有12种方法,选B.7圆的圆心为(2,2),半径为3,圆心到到直线的距离为3,圆上的点到直线的最大距离与最小距离的差是2R =6,选C.8设点P是函数的图象C的一个对称中心,若点P到图象C的对称轴上的距离的最小值, 最小正周期为,选B.9过双曲
9、线的左顶点(1,0)作斜率为1的直线:y=x1, 若与双曲线的两条渐近线分别相交于点, 联立方程组代入消元得, ,x1+x2=2x1x2,又,则B为AC中点,2x1=1+x2,代入解得, b2=9,双曲线的离心率e=,选D.10如图,OMAB,点P由射线OM、线段OB及AB的延长线围成的阴影区域内(不含边界).且,由图知,x0,当x=时,即=,P点在线段DE上,=,=,而0时,若,则,所以在区间上是增函数;若,则,所以在区间上是减函数;若,则,所以在区间上是增函数;(i i)当a0时,若,则,所以在区间上是减函数;若,则,所以在区间上是减函数;若,则,所以在区间上是增函数;若,则,所以在区间上
10、是减函数.()由()的讨论及题设知,曲线上的两点A、B的纵坐标为函数的极值,且函数在处分别是取得极值,.因为线段AB与x轴有公共点,所以.即.所以.故.解得1a0或3a4.即所求实数a的取值范围是-1,0)3,4.20. 解()由已知得,. ()因为,所以. 又因为,所以 =. 综上,.21. 解()当ABx轴时,点A、B关于x轴对称,所以m0,直线AB的方程为 x=1,从而点A的坐标为(1,)或(1,). 因为点A在抛物线上,所以,即. 此时C2的焦点坐标为(,0),该焦点不在直线AB上. ()解法一当C2的焦点在AB时,由()知直线AB的斜率存在,设直线AB的方程为.由消去y得. 设A、B
11、的坐标分别为(x1,y1), (x2,y2),则x1,x2是方程的两根,x1x2.AyBOx因为AB既是过C1的右焦点的弦,又是过C2的焦点的弦,所以,且.从而.所以,即.解得.因为C2的焦点在直线上,所以.即.当时,直线AB的方程为;当时,直线AB的方程为.解法二当C2的焦点在AB时,由()知直线AB的斜率存在,设直线AB的方程为.由消去y得. 因为C2的焦点在直线上,所以,即.代入有.即. 设A、B的坐标分别为(x1,y1), (x2,y2),则x1,x2是方程的两根,x1x2.由消去y得. 由于x1,x2也是方程的两根,所以x1x2.从而. 解得.因为C2的焦点在直线上,所以.即.当时,直线AB的方程为;当时,直线AB的方程为. 解法三设A、B的坐标分别为(x1,y1), (x2,y2),因为AB既过C1的右焦点,又是过C2的焦点,所以.即. 由()知,于是直线AB的斜率, 且直线AB的方程是,所以. 又因为,所以. 将、代入得,即.当时,直线AB的方程为;当时,直线AB的方程为.