《圆锥的侧面积和全面积 (2)课件.ppt》由会员分享,可在线阅读,更多相关《圆锥的侧面积和全面积 (2)课件.ppt(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、关于圆锥的侧面积和全面积(2)现在学习的是第1页,共36页180Rnl3602RnslRs21或1、弧长计算公式2、扇形面积计算公式一、知识回顾现在学习的是第2页,共36页现在学习的是第3页,共36页1.经历探索圆锥侧(全)面积计算公式的过程,发展学生的实践探索能力.2.了解圆锥的侧(全)面积计算公式后,能用公式进行计算,训练学生的数学应用能力.现在学习的是第4页,共36页如图,一只蚂蚁从底面圆周上一点B出发沿圆锥的侧面爬行一周后回到点B,请你帮助它找到最短的路线。二、设置情境B.ABCB现在学习的是第5页,共36页 圆锥可以看做是一个直角三角形绕它的一条直角边旋转一周所形成的图形.OABC现
2、在学习的是第6页,共36页AA2A1圆锥知识知多少hr母线高底面半径底面侧面BO现在学习的是第7页,共36页圆锥的相关概念圆锥的底面半径、高、母线长三者之间的关系:222rha(母线有无数条,母线都是相等的)圆锥是由一个底面和一个侧面围成的,它的底面是一个圆,侧面是一个曲面.现在学习的是第8页,共36页填空:根据下列条件求值(其中r、h、l分别是圆锥的底面半径、高线、母线长)(1)l=2,r=1 则h=_(2)h=3,r=4 则l=_(3)l=10,h=8 则r=_356现在学习的是第9页,共36页圆锥与侧面展开图之间的主要关系 沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形。1、这个扇形
3、的半径与圆锥中的哪一条线段相等?2、这个扇形的弧长与底面的周长有什么关系?3、圆锥的侧面积和这个扇形的面积有什么关系?三、探求新知现在学习的是第10页,共36页1.圆锥的母线长=扇形的半径 2.圆锥的底面周长=扇形的弧长圆锥与侧面展开图之间的主要关系:nRa=RC=l 3.圆锥的侧面积=扇形的面积现在学习的是第11页,共36页S侧=S扇形圆锥的侧面积rarala22121圆锥的侧面积=扇形的面积n公式一:raS侧现在学习的是第12页,共36页例例1.1.一个圆锥形零件的高一个圆锥形零件的高4cm4cm,底面半径,底面半径3cm3cm,求这个圆锥,求这个圆锥形零件的侧面积。形零件的侧面积。)(1
4、5532cmras侧534:2222rha解OPABrha答:圆锥形零件的侧面积是 .215 cm现在学习的是第13页,共36页即时训练即时训练 及时评价及时评价(2)(2)(1 1)已知圆锥的底面半径为)已知圆锥的底面半径为4 4,母线长为,母线长为6 6,则它的侧面积为,则它的侧面积为_._.2425(3)已知圆锥底面圆的半径为2cm,高为 ,则这个圆锥的侧面积为_.cm526 cm(2)已知圆锥的底面直径为20cm,母线长为12cm,则它的侧面积为_.2120 cm现在学习的是第14页,共36页n圆锥的侧面积圆锥的侧面积raan3602rna360rna360raS侧3602anS扇形公
5、式二:rna360现在学习的是第15页,共36页即时训练即时训练 及时评价(及时评价(3 3)填空、填空、根据下列条件求值根据下列条件求值 .(1)a=2 (1)a=2,r=1 r=1 则则n n=_ (2)a=9,r=3 (2)a=9,r=3 则则n n=_ (3)n=(3)n=90,a=4 ,a=4 则则r r=_ (4)n=(4)n=60,r=r=3 则则a a=_ n180120118现在学习的是第16页,共36页圆锥的全面积n 圆锥的全面积=圆锥的侧面积+底面积.2rra 现在学习的是第17页,共36页例例2.2.一个圆锥形零件的高一个圆锥形零件的高4cm4cm,底面半径,底面半径3
6、cm3cm,求这个圆锥形,求这个圆锥形零件的侧面积和全面积。零件的侧面积和全面积。224915cmsss底侧全534:2222rha解OPABrha)(15532cmras侧答:圆锥形零件的侧面积是 .224 cm现在学习的是第18页,共36页1.根据圆锥的下面条件,求它的侧面积和全面积(1)r=12cm,l=20cm(2)h=12cm,r=5cm 2.一个圆锥的侧面展开图是半径为18cm,圆心角为240度的扇形.则这个圆锥的底面半径为_ 12cm240 38465 90现在学习的是第19页,共36页弧长公式:c=180rn180cn=r计算圆心角n的度数:如何计算圆锥侧面展开图的圆心角的度数
7、呢?360lrlr2180lc180cl现在学习的是第20页,共36页例1.圆锥形烟囱帽(如图)的母线长为80cm,高为38.7cm,求这个烟囱帽的面积(取3.14,结果保留2个有效数字)解:l=80,h=38.7r=2222lh8038.770 cmS侧=rl3.1470801.8104(cm2)答:烟囱帽的面积约为1.8104cm2.现在学习的是第21页,共36页 一个圆锥形的零件,经过轴的剖面是一个等腰三角形,这个三角形就叫做圆锥的轴截面;它的腰长等于圆锥的母线长,底边长等于圆锥底面的直径.圆锥的轴截面如ABC就是圆锥的轴截面现在学习的是第22页,共36页例2.已知一个圆锥的轴截面ABC
8、是等边三角形,它的表面积为752,求这个圆锥的底面半径和母线的长.解:圆锥轴截面ABC是正三角形l=2rr2r+r2=75r=5 cm,l=10 cm答:圆锥的底面半径为5cm,母线长为10cm.现在学习的是第23页,共36页例3.圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽.已知纸帽的底面周长58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2)现在学习的是第24页,共36页解:设纸帽的底面半径为rcm,母线长为Lcm,225858rL=()+2022.03(cm)2221SrL58 22.03 638.87(cm)2圆锥侧638.8720=12
9、777.4(cm2)所以,至少要12777.4 cm2的纸.现在学习的是第25页,共36页1.高为,底面直径为的圆锥侧面积为cm2;2.圆锥的母线与高的夹角为30,母线长为6cm,求它的侧面积为 cm,全面积为 cm.3.若圆锥的母线L=10cm,高h=8cm,则其侧面展开图中扇形的圆心角是.182721615(结果可含)现在学习的是第26页,共36页4.已知圆锥底面半径为10cm,母线长为40cm.(1)求它的侧面展开图的圆心角和全面积;(2)若一甲虫从圆锥底面圆上一点A出发,沿着圆锥侧面绕行到母线AB的中点C,它所走的最短路程是多少?lhrOAB现在学习的是第27页,共36页hrOABl解
10、:(1)C底面=2r=20n40nC=180180底面又l40n20=180on=9021S=S+S=2040+102全侧底2S=500(cm)全答:侧面展开图的圆心角为90,全面积为50cm2.现在学习的是第28页,共36页l=40ABC(2)连接AC,甲虫所走最短路程就是起点与终点间的距离,即线段AC的长.由(1)得,B=90在RtABC中,AB=40cm,BC=20cm2222ACABBC402020 5(cm)则甲虫所做的最短路程为20 5cm现在学习的是第29页,共36页5.李明同学和马强同学合作,将半径为1米,圆心角为90的扇形薄铁板围成一个圆锥筒.在计算圆锥的容积(接缝忽略不计)
11、时,李明认为圆锥的高就等于扇形的圆心O到弦AB的距离OC(如图),马强说这样计算不正确,你同意谁的说法?说说你的理由.现在学习的是第30页,共36页分析:此题首先要弄清圆锥的有关概念,如圆锥的高,侧面展开图,侧面展开图中扇形的半径,弧长各是多少.与圆锥的母线长,底面圆半径的关系是什么.此题中,圆锥的高是图中SO.因此,我同意马强的说法,计算如下:OAS2OAOB1,AOB90OC29011152 O AO ASO18044OCSO.显然因此马强的说法正确现在学习的是第31页,共36页6.已知:在RtABC,C=90,AB=13cm,BC=5cm.CDAB于点D.求以AB为轴旋转一周所得到的几何
12、体的全面积.旋转得到怎样的几何体?现在学习的是第32页,共36页分析:以AB为轴旋转一周所得到的几何体是由公共底面的两个圆锥所组成的几何体,因此求全面积就是求两个圆锥的侧面积.两个圆锥的母线、底面半径各是多少呢?现在学习的是第33页,共36页在RtABC中,解:由勾股定理得:AC=12,C底面=2CD=AC BC12 560CD=,AB1313120.13S全面积=1120122131120+521321020=(cm).13这个几何体的全面积为21020cm.13现在学习的是第34页,共36页【规律方法】圆锥的侧面展开图是一个扇形,若圆锥母线长为l,底面半径为r,那么这个扇形的半径为l,扇形的弧长为2r,因此圆锥的侧面积为rl,这里涉及到两个半径一定要分清楚.现在学习的是第35页,共36页感谢大家观看现在学习的是第36页,共36页