《高考数学试卷(文科)(新课标ⅰ)(含解析版) 14版.doc》由会员分享,可在线阅读,更多相关《高考数学试卷(文科)(新课标ⅰ)(含解析版) 14版.doc(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2014年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)已知集合M=x|1x3,N=x|2x1,则MN=()A(2,1)B(1,1)C(1,3)D(2,3)2(5分)若tan0,则()Asin0Bcos0Csin20Dcos203(5分)设z=+i,则|z|=()ABCD24(5分)已知双曲线=1(a0)的离心率为2,则实数a=()A2BCD15(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()Af(x)g(x)是偶函数B|f(x)|g(x)是
2、奇函数Cf(x)|g(x)|是奇函数D|f(x)g(x)|是奇函数6(5分)设D,E,F分别为ABC的三边BC,CA,AB的中点,则+=()ABCD7(5分)在函数y=cos|2x|,y=|cosx|,y=cos(2x+),y=tan(2x)中,最小正周期为的所有函数为()ABCD8(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A三棱锥B三棱柱C四棱锥D四棱柱9(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()ABCD10(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()
3、A1B2C4D811(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A5B3C5或3D5或312(5分)已知函数f(x)=ax33x2+1,若f(x)存在唯一的零点x0,且x00,则实数a的取值范围是()A(1,+)B(2,+)C(,1)D(,2)二、填空题:本大题共4小题,每小题5分13(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 14(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 15(5分)设函数f(
4、x)=,则使得f(x)2成立的x的取值范围是 16(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角MAN=60,C点的仰角CAB=45以及MAC=75;从C点测得MCA=60,已知山高BC=100m,则山高MN= m三、解答题:解答应写出文字说明证明过程或演算步骤17(12分)已知an是递增的等差数列,a2,a4是方程x25x+6=0的根(1)求an的通项公式;(2)求数列的前n项和18(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组75,85)85,95)95,105)105,115)1
5、15,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19(12分)如图,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO平面BB1C1C(1)证明:B1CAB;(2)若ACAB1,CBB1=60,BC=1,求三棱柱ABCA1B1C1的高20(12分)已知点P(2,2),圆C:x2+y28y=0,过点P的动直线l与圆C交于A,B两点,线段AB
6、的中点为M,O为坐标原点(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及POM的面积21(12分)设函数f(x)=alnx+x2bx(a1),曲线y=f(x)在点(1,f(1)处的切线斜率为0,(1)求b;(2)若存在x01,使得f(x0),求a的取值范围请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。【选修4-1:几何证明选讲】22(10分)如图,四边形ABCD是O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE()证明:D=E;()设AD不是O的直径,AD的中点为M,且MB=MC,证明:ADE为等边三角形【选修4-4:坐标系与参数方
7、程】23已知曲线C:+=1,直线l:(t为参数)()写出曲线C的参数方程,直线l的普通方程()过曲线C上任意一点P作与l夹角为30的直线,交l于点A,求|PA|的最大值与最小值【选修4-5:不等式选讲】24若a0,b0,且+=()求a3+b3的最小值;()是否存在a,b,使得2a+3b=6?并说明理由2014年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)已知集合M=x|1x3,N=x|2x1,则MN=()A(2,1)B(1,1)C(1,3)D(2,3)【考点】1E:交集及其运算菁优
8、网版权所有【专题】5J:集合【分析】根据集合的基本运算即可得到结论【解答】解:M=x|1x3,N=x|2x1,则MN=x|1x1,故选:B【点评】本题主要考查集合的基本运算,比较基础2(5分)若tan0,则()Asin0Bcos0Csin20Dcos20【考点】GC:三角函数值的符号菁优网版权所有【专题】56:三角函数的求值【分析】化切为弦,然后利用二倍角的正弦得答案【解答】解:tan0,则sin2=2sincos0故选:C【点评】本题考查三角函数值的符号,考查了二倍角的正弦公式,是基础题3(5分)设z=+i,则|z|=()ABCD2【考点】A5:复数的运算菁优网版权所有【专题】11:计算题;
9、5N:数系的扩充和复数【分析】先求z,再利用求模的公式求出|z|【解答】解:z=+i=+i=故|z|=故选:B【点评】本题考查复数代数形式的运算,属于容易题4(5分)已知双曲线=1(a0)的离心率为2,则实数a=()A2BCD1【考点】KC:双曲线的性质菁优网版权所有【专题】11:计算题;5D:圆锥曲线的定义、性质与方程【分析】由双曲线方程找出a,b,c,代入离心率,从而求出a【解答】解:由题意,e=2,解得,a=1故选:D【点评】本题考查了双曲线的定义,属于基础题5(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()Af(x)g(x)是
10、偶函数B|f(x)|g(x)是奇函数Cf(x)|g(x)|是奇函数D|f(x)g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断菁优网版权所有【专题】51:函数的性质及应用【分析】根据函数奇偶性的性质即可得到结论【解答】解:f(x)是奇函数,g(x)是偶函数,f(x)=f(x),g(x)=g(x),f(x)g(x)=f(x)g(x),故函数是奇函数,故A错误,|f(x)|g(x)=|f(x)|g(x)为偶函数,故B错误,f(x)|g(x)|=f(x)|g(x)|是奇函数,故C正确|f(x)g(x)|=|f(x)g(x)|为偶函数,故D错误,故选:C【点评】本题主要考查函数奇偶性的判断,根据
11、函数奇偶性的定义是解决本题的关键6(5分)设D,E,F分别为ABC的三边BC,CA,AB的中点,则+=()ABCD【考点】9S:数量积表示两个向量的夹角菁优网版权所有【专题】5A:平面向量及应用【分析】利用向量加法的三角形法则,将,分解为+和+的形式,进而根据D,E,F分别为ABC的三边BC,CA,AB的中点,结合数乘向量及向量加法的平行四边形法则得到答案【解答】解:D,E,F分别为ABC的三边BC,CA,AB的中点,+=(+)+(+)=+=(+)=,故选:A【点评】本题考查的知识点是向量在几何中的应用,熟练掌握向量加法的三角形法则和平行四边形法则是解答的关键7(5分)在函数y=cos|2x|
12、,y=|cosx|,y=cos(2x+),y=tan(2x)中,最小正周期为的所有函数为()ABCD【考点】H1:三角函数的周期性菁优网版权所有【专题】57:三角函数的图像与性质【分析】根据三角函数的周期性,求出各个函数的最小正周期,从而得出结论【解答】解:函数y=cos丨2x丨=cos2x,它的最小正周期为 =,y=丨cosx丨的最小正周期为=,y=cos(2x+)的最小正周期为 =,y=tan(2x)的最小正周期为 ,故选:A【点评】本题主要考查三角函数的周期性及求法,属于基础题8(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A三棱锥B三棱柱C
13、四棱锥D四棱柱【考点】L7:简单空间图形的三视图菁优网版权所有【专题】5F:空间位置关系与距离【分析】由题意画出几何体的图形即可得到选项【解答】解:根据网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,可知几何体如图:几何体是三棱柱故选:B【点评】本题考查三视图复原几何体的直观图的判断方法,考查空间想象能力9(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()ABCD【考点】EF:程序框图菁优网版权所有【专题】5I:概率与统计【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=
14、2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4不满足条件n3,跳出循环体,输出M=故选:D【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法10(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A1B2C4D8【考点】K8:抛物线的性质菁优网版权所有【专题】5D:圆锥曲线的定义、性质与方程【分析】利用抛物线的定义、焦点弦长公式即可得出【解答】解:抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,x00=x0+,解得x0=1故选:A【点评】本题考
15、查了抛物线的定义、焦点弦长公式,属于基础题11(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A5B3C5或3D5或3【考点】7F:基本不等式及其应用菁优网版权所有【专题】5B:直线与圆【分析】如图所示,当a1时,由,解得当直线z=x+ay经过A点时取得最小值为7,同理对a1得出【解答】解:如图所示,当a1时,由,解得,y=当直线z=x+ay经过A点时取得最小值为7,化为a2+2a15=0,解得a=3,a=5舍去当a1时,不符合条件故选:B【点评】本题考查了线性规划的有关知识、直线的斜率与交点,考查了数形结合的思想方法,属于中档题12(5分)已知函数f(x)=ax33x2+1
16、,若f(x)存在唯一的零点x0,且x00,则实数a的取值范围是()A(1,+)B(2,+)C(,1)D(,2)【考点】53:函数的零点与方程根的关系菁优网版权所有【专题】11:计算题;51:函数的性质及应用;53:导数的综合应用【分析】由题意可得f(x)=3ax26x=3x(ax2),f(0)=1;分类讨论确定函数的零点的个数及位置即可【解答】解:f(x)=ax33x2+1,f(x)=3ax26x=3x(ax2),f(0)=1;当a=0时,f(x)=3x2+1有两个零点,不成立;当a0时,f(x)=ax33x2+1在(,0)上有零点,故不成立;当a0时,f(x)=ax33x2+1在(0,+)上
17、有且只有一个零点;故f(x)=ax33x2+1在(,0)上没有零点;而当x=时,f(x)=ax33x2+1在(,0)上取得最小值;故f()=3+10;故a2;综上所述,实数a的取值范围是(,2);故选:D【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题二、填空题:本大题共4小题,每小题5分13(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为【考点】CB:古典概型及其概率计算公式菁优网版权所有【专题】5I:概率与统计【分析】首先求出所有的基本事件的个数,再从中找到2本数学书相邻的个数,最后根据概率公式计算即可【
18、解答】解:2本不同的数学书和1本语文书在书架上随机排成一行,所有的基本事件有共有=6种结果,其中2本数学书相邻的有(数学1,数学2,语文),(数学2,数学1,语文),(语文,数学1,数学2),(语文,数学2,数学1)共4个,故本数学书相邻的概率P=故答案为:【点评】本题考查了古典概型的概率公式的应用,关键是不重不漏的列出满足条件的基本事件14(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A【考点】F4:进行简单的合情推理菁优网版权所有【专题】5M:推理和证明【分析
19、】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A故答案为:A【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题15(5分)设函数f(x)=,则使得f(x)2成立的x的取值范围是x8【考点】5B:分段函数的应用菁优网版权所有【专题】11:计算题;51:函数的性质及应用【分析】利用分段函数,结合f(x)2,解不等式,即可求出使得f(x)2成
20、立的x的取值范围【解答】解:x1时,ex12,xln2+1,x1;x1时,2,x8,1x8,综上,使得f(x)2成立的x的取值范围是x8故答案为:x8【点评】本题考查不等式的解法,考查分段函数,考查学生的计算能力,属于基础题16(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角MAN=60,C点的仰角CAB=45以及MAC=75;从C点测得MCA=60,已知山高BC=100m,则山高MN=150m【考点】HU:解三角形菁优网版权所有【专题】12:应用题;58:解三角形【分析】ABC中,由条件利用直角三角形中的边角关系求得 AC;AMC中,由条件利用正弦定理求
21、得AM;RtAMN中,根据MN=AMsinMAN,计算求得结果【解答】解:ABC中,BAC=45,ABC=90,BC=100,AC=100AMC中,MAC=75,MCA=60,AMC=45,由正弦定理可得,解得AM=100RtAMN中,MN=AMsinMAN=100sin60=150(m),故答案为:150【点评】本题主要考查正弦定理、直角三角形中的边角关系,属于中档题三、解答题:解答应写出文字说明证明过程或演算步骤17(12分)已知an是递增的等差数列,a2,a4是方程x25x+6=0的根(1)求an的通项公式;(2)求数列的前n项和【考点】84:等差数列的通项公式;8E:数列的求和菁优网版
22、权所有【专题】15:综合题;54:等差数列与等比数列【分析】(1)解出方程的根,根据数列是递增的求出a2,a4的值,从而解出通项;(2)将第一问中求得的通项代入,用错位相减法求和【解答】解:(1)方程x25x+6=0的根为2,3又an是递增的等差数列,故a2=2,a4=3,可得2d=1,d=,故an=2+(n2)=n+1,(2)设数列的前n项和为Sn,Sn=,Sn=,得Sn=,解得Sn=2【点评】本题考查等的性质及错位相减法求和,是近几年高考对数列解答题考查的主要方式18(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组75,8
23、5)85,95)95,105)105,115)115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?【考点】B8:频率分布直方图;BC:极差、方差与标准差菁优网版权所有【专题】5I:概率与统计【分析】(1)根据频率分布直方图做法画出即可;(2)用样本平均数和方差来估计总体的平均数和方差,代入公式计算即可(3)求出质量指标值不低于95的产品所占比例的估计值,再和0.8比
24、较即可【解答】解:(1)频率分布直方图如图所示:(2)质量指标的样本平均数为=800.06+900.26+1000.38+1100.22+1200.08=100,质量指标的样本的方差为S2=(20)20.06+(10)20.26+00.38+1020.22+2020.08=104,这种产品质量指标的平均数的估计值为100,方差的估计值为104(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68,由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定【点评】本题主要考查了频率分布直方图,样本平均数和
25、方差,考查了学习的细心的绘图能力和精确的计算能力19(12分)如图,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO平面BB1C1C(1)证明:B1CAB;(2)若ACAB1,CBB1=60,BC=1,求三棱柱ABCA1B1C1的高【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直菁优网版权所有【专题】15:综合题;5F:空间位置关系与距离【分析】(1)连接BC1,则O为B1C与BC1的交点,证明B1C平面ABO,可得B1CAB;(2)作ODBC,垂足为D,连接AD,作OHAD,垂足为H,证明CBB1为等边三角形,求出B1到平面ABC的距离,即可求三棱柱AB
26、CA1B1C1的高【解答】(1)证明:连接BC1,则O为B1C与BC1的交点,侧面BB1C1C为菱形,BC1B1C,AO平面BB1C1C,AOB1C,AOBC1=O,B1C平面ABO,AB平面ABO,B1CAB;(2)解:作ODBC,垂足为D,连接AD,作OHAD,垂足为H,BCAO,BCOD,AOOD=O,BC平面AOD,OHBC,OHAD,BCAD=D,OH平面ABC,CBB1=60,CBB1为等边三角形,BC=1,OD=,ACAB1,OA=B1C=,由OHAD=ODOA,可得AD=,OH=,O为B1C的中点,B1到平面ABC的距离为,三棱柱ABCA1B1C1的高【点评】本题考查线面垂直的
27、判定与性质,考查点到平面距离的计算,考查学生分析解决问题的能力,属于中档题20(12分)已知点P(2,2),圆C:x2+y28y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及POM的面积【考点】%H:三角形的面积公式;J3:轨迹方程菁优网版权所有【专题】5B:直线与圆【分析】(1)由圆C的方程求出圆心坐标和半径,设出M坐标,由与数量积等于0列式得M的轨迹方程;(2)设M的轨迹的圆心为N,由|OP|=|OM|得到ONPM求出ON所在直线的斜率,由直线方程的点斜式得到PM所在直线方程,由点到直线的距离公式
28、求出O到l的距离,再由弦心距、圆的半径及弦长间的关系求出PM的长度,代入三角形面积公式得答案【解答】解:(1)由圆C:x2+y28y=0,得x2+(y4)2=16,圆C的圆心坐标为(0,4),半径为4设M(x,y),则,由题意可得:即x(2x)+(y4)(2y)=0整理得:(x1)2+(y3)2=2M的轨迹方程是(x1)2+(y3)2=2(2)由(1)知M的轨迹是以点N(1,3)为圆心,为半径的圆,由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ONPMkON=3,直线l的斜率为直线PM的方程为,即x+3y8=0则O到直线l的距离为又N到l的距离为,|PM|=【点评】本
29、题考查圆的轨迹方程的求法,训练了利用向量数量积判断两个向量的垂直关系,训练了点到直线的距离公式的应用,是中档题21(12分)设函数f(x)=alnx+x2bx(a1),曲线y=f(x)在点(1,f(1)处的切线斜率为0,(1)求b;(2)若存在x01,使得f(x0),求a的取值范围【考点】6H:利用导数研究曲线上某点切线方程菁优网版权所有【专题】53:导数的综合应用【分析】(1)利用导数的几何意义即可得出;(2)对a分类讨论:当a时,当a1时,当a1时,再利用导数研究函数的单调性极值与最值即可得出【解答】解:(1)f(x)=(x0),曲线y=f(x)在点(1,f(1)处的切线斜率为0,f(1)
30、=a+(1a)1b=0,解得b=1(2)函数f(x)的定义域为(0,+),由(1)可知:f(x)=alnx+,=当a时,则,则当x1时,f(x)0,函数f(x)在(1,+)单调递增,存在x01,使得f(x0)的充要条件是,即,解得;当a1时,则,则当x时,f(x)0,函数f(x)在上单调递减;当x时,f(x)0,函数f(x)在上单调递增存在x01,使得f(x0)的充要条件是,而=+,不符合题意,应舍去若a1时,f(1)=,成立综上可得:a的取值范围是【点评】本题考查了导数的几何意义、利用导数研究函数的单调性极值与最值等基础知识与基本技能方法,考查了分类讨论的思想方法,考查了推理能力和计算能力,
31、属于难题请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。【选修4-1:几何证明选讲】22(10分)如图,四边形ABCD是O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE()证明:D=E;()设AD不是O的直径,AD的中点为M,且MB=MC,证明:ADE为等边三角形【考点】NB:弦切角;NC:与圆有关的比例线段菁优网版权所有【专题】15:综合题;5M:推理和证明【分析】()利用四边形ABCD是O的内接四边形,可得D=CBE,由CB=CE,可得E=CBE,即可证明:D=E;()设BC的中点为N,连接MN,证明ADBC,可得A=CBE,进而可得A=E,即可
32、证明ADE为等边三角形【解答】证明:()四边形ABCD是O的内接四边形,D=CBE,CB=CE,E=CBE,D=E;()设BC的中点为N,连接MN,则由MB=MC知MNBC,O在直线MN上,AD不是O的直径,AD的中点为M,OMAD,ADBC,A=CBE,CBE=E,A=E,由()知,D=E,ADE为等边三角形【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题【选修4-4:坐标系与参数方程】23已知曲线C:+=1,直线l:(t为参数)()写出曲线C的参数方程,直线l的普通方程()过曲线C上任意一点P作与l夹角为30的直线,交l于点A,求|PA|的最大值与最小值【考点】K
33、H:直线与圆锥曲线的综合;QH:参数方程化成普通方程菁优网版权所有【专题】5S:坐标系和参数方程【分析】()联想三角函数的平方关系可取x=2cos、y=3sin得曲线C的参数方程,直接消掉参数t得直线l的普通方程;()设曲线C上任意一点P(2cos,3sin)由点到直线的距离公式得到P到直线l的距离,除以sin30进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值【解答】解:()对于曲线C:+=1,可令x=2cos、y=3sin,故曲线C的参数方程为,(为参数)对于直线l:,由得:t=x2,代入并整理得:2x+y6=0;()设曲线C上任意一点P(2cos,3sin)P到直线
34、l的距离为则,其中为锐角当sin(+)=1时,|PA|取得最大值,最大值为当sin(+)=1时,|PA|取得最小值,最小值为【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题【选修4-5:不等式选讲】24若a0,b0,且+=()求a3+b3的最小值;()是否存在a,b,使得2a+3b=6?并说明理由【考点】RI:平均值不等式菁优网版权所有【专题】59:不等式的解法及应用【分析】()由条件利用基本不等式求得ab2,再利用基本不等式求得a3+b3的最小值()根据 ab2及基本不等式求的2a+3b8,从而可得不存在a,b,使得2a+3b=6【解答】解:()a0,b0,且+=,=+2,ab2,当且仅当a=b=时取等号a3+b3 22=4,当且仅当a=b=时取等号,a3+b3的最小值为4()2a+3b2=2,当且仅当2a=3b时,取等号而由(1)可知,22=46,故不存在a,b,使得2a+3b=6成立【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题第30页(共30页)