《高等代数I》考试大纲.docx

上传人:创****公 文档编号:3880415 上传时间:2020-11-09 格式:DOCX 页数:3 大小:20.71KB
返回 下载 相关 举报
《高等代数I》考试大纲.docx_第1页
第1页 / 共3页
《高等代数I》考试大纲.docx_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《《高等代数I》考试大纲.docx》由会员分享,可在线阅读,更多相关《《高等代数I》考试大纲.docx(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高等代数I考试大纲一、课程教学基本要求1课程重点:高等代数主要分为以下部分:矩阵,线性空间,线性变换, 多项式理论,线性方程组理论,行列式.矩阵理论的重点在矩阵的运算、分块矩阵.线性空间理论的重点在线性空间的概念、向量的线性关系、基、维数、坐标以及线性空间的直和分解. 线性变换的重点是线性变换的像、核求法以及不变子空间的判定.多项式理论的重点在多项式的整除性,及多项式的因式分解理论.线性方程组理论的重点在线性方程组的解的结构和求解的算法.行列式的重点在行列式的计算.欧氏空间、二次型等内容上.矩阵与行列式是研究线性关系的重要工具,也是课程的重点内容之一,矩阵的方法贯穿课程的始终.2课程难点:本课

2、程的难点很多,从知识上讲,线性空间的概念、向量的线性相关性、线性映射,多项式在有理数域的分解、方程组解的判定、二次型正定的判定等等;从方法上讲,高等代数课程解决问题的方法比较灵活,技巧性比较强,是不易学习和掌握的.3能力培养要求:要求学生熟练掌握线性空间和线性变换的基本理论,熟练掌握矩阵的初等变换、行列式这种重要的数学工具,掌握多项式的因式分解理论、向量组线性相关及线性无关理论.初步掌握线性代数的方法和技巧.二、课程教学内容与学时1预备知识熟悉基本的概念:集合及运算,等价关系,映射、数域;2多项式2.1 多项式,带余除法,整除性掌握带余除法,多项式的整除性.2.2 最大公因式了解公因式的概念,

3、掌握最大公因式的定义、性质、算法.2.3 因式分解了解多项式的唯一分解定理,了解重因式及其判断方法、掌握不可约多项式及性质.2.4多项式的根熟练掌握余式定理及其应用.2.5复系数、实系数多项式掌握代数学基本定理,了解复系数、实系数多项式在相应数域中的分解形式,掌握根与系数的关系定理.2.6整系数多项式了解本原多项式的概念及Gauss引理,掌握Eisenstein判别法.3矩阵 3.1 矩阵的概念及运算了解矩阵的背景,熟练掌握矩阵的和、差、数乘、乘法、转置运算.3.2 矩阵的初等变换熟练掌握矩阵的初等变换,掌握初等方阵与初等变换的关系.3.3 矩阵的相抵了解掌握矩阵相抵的概念、相抵的标准形、矩阵

4、的逆及其计算方法.3.4分块矩阵了解分块矩阵的概念及矩阵的分块运算.3.5矩阵的秩熟练掌握运用矩阵的秩的定义,以及秩的基本性质.4. 线性空间 4.1 线性空间掌握线性空间的概念及重要的线性空间实例.4.2 向量的线性相关性理解向量的线性相关、线性无关的概念,并能熟练掌握和使用线性相关性的重要结果.4.3 基、维数、坐标、坐标变换理解和掌握基、维数的概念,掌握坐标变换及过渡矩阵的计算.4.4线性子空间了解构成线性子空间的条件.4.5子空间的和与交、直和掌握子空间的和与交的运算,掌握直和的概念及直和的等价条件.4.6线性空间的同构了解线性空间同构的概念,掌握线性空间由其维数决定的结论.5.线性变

5、换5.1 线性映射掌握线性映射的定义及矩阵表示,理解掌握线性映射的象与核的概念及相关结果.5.2 线性映射的像与核掌握线性映射的像与核的概念,以及与基和维数的关系.5.3 线性变换掌握线性变换的定义及矩阵表示,掌握线性变换的运算.5.4 不变子空间掌握不变子空间的定义及相关结论.5.5 特征值与特征向量掌握线性变换的特征值与特征向量的定义与性质,并可以根据线性变换的特点计算该变换的特征值与特征向量,掌握矩阵对角化的条件.6 欧氏空间 6.1 内积熟练掌握内积的定义及性质.6.2 标准正交基掌握度量矩阵、标准正交基的定义,以及正交化方法.6.3 正交子空间6.4 正交变换了解正交变换的概念与意义

6、.6.5 对称变换掌握对称变换的定义及相关结论.7 二次型 7.1 二次型的定义7.2 二次型的标准形掌握惯性定理,了解和掌握在实数域、复数域中二次型的规范型.7.3 正定二次型掌握二次型的定性,及正定、半正定的充要条件.8 线性方程组 8.1 Gauss消元法熟练掌握Gauss消元法,了解线性方程组的解的形式.8.2 线性方程组熟练掌握线性方程组的解的结构及求解方法.9 行列式 9.1 行列式的定义了解逆序的概念,掌握行列式的定义.9.2 行列式的性质与计算熟练掌握行列式的性质,掌握行列式按行列展开的方法,能够熟练计算行列式的值.9.3 行列式理论的应用掌握Crame法则,能够利用行列式解决

7、以前各章出现的相关问题.10 相似标准形 10.1 特征值与特征向量的计算熟练掌握特征值与特征向量的计算.10.2 对称矩阵的标准形的计算熟练计算对称矩阵的标准形10.3 特征多项式与最小多项式了解特征多项式与最小多项式的概念及性质,矩阵对角化的条件.10.4 Jordan标准形掌握Jordan标准形的定义、推导、计算.10.5 Jordan标准形的又一推导了解-矩阵、初等因子、不变因子的概念,了解利用-矩阵计算矩阵Jordan标准形的方法.三、教材与参考书教材1. 申亚男、李为东编著,高等代数,机械工业出版社,2015年9月第1版2北京大学几何与代数教研室代数小组编,高等代数,高等教育出版社1991,第3版 参考书1. 许以超编,线性代数与矩阵论,高等教育出版社,1992年,第1版2. 屠伯埙, 徐诚浩, 王芬编,高等代数,上海科技出版社,1987年,第1版3. 丘维声编,高等代数,高等教育出版社,1996年,第1版3

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 事务文书

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁