半导体的导电性课件.ppt

上传人:石*** 文档编号:38764045 上传时间:2022-09-05 格式:PPT 页数:90 大小:7.07MB
返回 下载 相关 举报
半导体的导电性课件.ppt_第1页
第1页 / 共90页
半导体的导电性课件.ppt_第2页
第2页 / 共90页
点击查看更多>>
资源描述

《半导体的导电性课件.ppt》由会员分享,可在线阅读,更多相关《半导体的导电性课件.ppt(90页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、关于半导体的导电性现在学习的是第1页,共90页24.1 半导体的导电原理半导体的导电原理现在学习的是第2页,共90页34.1.1 4.1.1 半导体导电的微观机理半导体导电的微观机理半导体在外电场作用下是否存在电流并不取决于单个电子的行为,而是取决于整个晶体中所有电子运动的总和。1、从能带的角度理解半导体导电性:满带满带:在外加电场的作用下,电子从第一布里渊区边界的一边流进,另一边流出。但由于电子的状态是波矢的周期函数,波函数在第一布里渊区边界两边的状态等价,总体上不呈现电流。现在学习的是第3页,共90页44.1.1 4.1.1 半导体导电的微观机理半导体导电的微观机理(a)E0不满带:不满带

2、:对被电子部分填充的能带情况,电子对称地占据能量较低的状态,如下图(a)所示,没有外电场作用时不呈现出电流。(b)E0当存在如下图(b)所示电场时,电子在能带中的分布发生变化,从而呈现出电流。现在学习的是第4页,共90页54.1.1 4.1.1 半导体导电的微观机理半导体导电的微观机理理想的半导体:理想的半导体:无限大的、既没有杂质和缺陷也没有晶格振动和电子间的相互碰撞。dtdkqExx当能带只是部分填充时,在外电场作用下,所有电子波矢以相同速率变化:从而使电子在布里渊区的分布不再对称,因而产生电流。理想的半导体的电阻为零:理想的半导体的电阻为零:现在学习的是第5页,共90页64.1.1 4.

3、1.1 半导体导电的微观机理半导体导电的微观机理实际晶体是不完整性,杂质、缺陷、晶格热振动将对电子产生散射,使电子重新趋于对称分布,电流变为零,即存在电阻。当外电场除去后,因为:0dtdkx电子在布里渊区的非对称分布不再变化,从而电流将保持下去。也就是说,在外电场为零的情况下,电流仍不等于零。意味着电导率应为无穷大,电阻率应为零。现在学习的是第6页,共90页74.1.1 4.1.1 半导体导电的微观机理半导体导电的微观机理2 2、从晶格角度理解半导体的导电性:、从晶格角度理解半导体的导电性:在一定温度下,共价键上的电子e挣脱了价键的束缚,进入到晶格空间中成为准自由电子,这个电子在外电场的作用下

4、运动而形成电子电流晶格中空穴和电子导电示意图在价键上的电子进入晶格后留下空穴,当这个空穴被电子重新填充后,会在另一位置产生新的空穴,这一过程即形成空穴电流。现在学习的是第7页,共90页84.1.2 4.1.2 半导体导电的宏观电流欧姆定律的微分形式半导体导电的宏观电流欧姆定律的微分形式实验表明,在电场不太大时,半导体中的电流与电压仍服从欧姆定律:实验表明,在电场不太大时,半导体中的电流与电压仍服从欧姆定律:RUI slR电阻为为半导体的电阻率,单位为m 或cm 1单位西门子/米(S/m或S/cm)EdsdIJ电流密度:-欧姆定律的微分形式电导率现在学习的是第8页,共90页94.1.2 4.1.

5、2 半导体导电的宏观电流欧姆定律的微分形式半导体导电的宏观电流欧姆定律的微分形式若只考虑电子的运动,在dt时间内通过ds的电荷量就是A、B面间小柱体内的电子电量,即dtdsvnqQd 当电场作用于半导体时,电子获得一个和外电场反向的平均速度,用 表示其大小,空穴则获得与电场同向的速度,用 表示其大小。vdva现在学习的是第9页,共90页104.1.2 4.1.2 半导体导电的宏观电流欧姆定律的微分形式半导体导电的宏观电流欧姆定律的微分形式得电子对电流密度的贡献:dnvnqJapvpqJ同理,空穴对电流的贡献:同时考虑电子和空穴的贡献时,总电流密度为:advpqvnqJ利用电流密度的定义:dtd

6、sdQJ/现在学习的是第10页,共90页114.2 载流子的漂移运动、迁移率及散射机构载流子的漂移运动、迁移率及散射机构现在学习的是第11页,共90页124.2.1 4.2.1 漂移运动漂移运动 迁移率与电导率迁移率与电导率外电场作用下电子的漂移运动半导体中的载流子在电场作用下不断加速的同时,又不断地受到散射作用而改变其运动的方向或运动的速度,运动的总效果使其保持一定的定向运动速度,载流子的这种运动称漂移运动漂移运动,这个速度称为平均平均漂移速度漂移速度。载流子在外电场中的运动是热运动和漂移运动的叠加。现在学习的是第12页,共90页134.2.1 4.2.1 漂移运动漂移运动 迁移率与电导率迁

7、移率与电导率EvdnEvdn和p分别称为电子迁移率和空穴迁移率。物理意义:表示在单位场强下电子或空穴所获得的平均漂移速度,单位为m2/Vs或cm2/Vs根据欧姆定律微分形式,J 跟 E 成正比,因此令:EvaEvndEvpaEvaa现在学习的是第13页,共90页144.2.1 4.2.1 漂移运动漂移运动 迁移率与电导率迁移率与电导率迁移率迁移率是半导体材料的重要参数,它表示电子或空穴在外电场作用下作漂移运动的难易程度。电子是脱离共价键成为准自由运动的电子,而空穴实际上是共价键上的电子在价键间的运动产生的效果,电子在价键间移动的速度小于准自由的电子的运动速度。n 和和p哪个大?哪个大?n p现

8、在学习的是第14页,共90页154.2.1 4.2.1 漂移运动漂移运动 迁移率与电导率迁移率与电导率总漂移电流密度为:E pq nqJpnpnpq nq与欧姆定律微分形式比较得到半导体电导率表示式为:电子和空穴的漂移运动现在学习的是第15页,共90页164.2.1 4.2.1 漂移运动漂移运动 迁移率与电导率迁移率与电导率pnq对于p型半导体(pn),电导率为:对于本征半导体(npni),则电导率为:qnpniinnq对于n型半导体(np),电导率为现在学习的是第16页,共90页174.2.2 4.2.2 载流子的散射载流子的散射载流子散射的根本原因载流子散射的根本原因:周期性势场被破坏。晶

9、格的周期性被破坏后,与周期性势场相比,存在一附加势场,使能带中的电子发生不同k状态间的跃迁,即遭到散射:)()(kvkv现在学习的是第17页,共90页184.2.2 4.2.2 载流子的散射载流子的散射产生附加势场产生附加势场的原因的原因电离杂质电离杂质晶格振动晶格振动位错位错载流子载流子中性杂质中性杂质空位空位现在学习的是第18页,共90页194.2.2 4.2.2 载流子的散射载流子的散射1 1)电离杂质散射)电离杂质散射-杂质电离产生库仑场杂质电离产生库仑场电离杂质散射示意图(a)电离施主散射散射几率散射几率(P(Pi i):):描述散射的强弱,它表示单位时间内一个载流子受到散射的次数。

10、现在学习的是第19页,共90页204.2.2 4.2.2 载流子的散射载流子的散射23iipTN电离杂质对载流子的散射概率电离杂质对载流子的散射概率:温度和杂质浓度与散射次数的关系温度和杂质浓度与散射次数的关系现在学习的是第20页,共90页4.2.2 4.2.2 载流子的散射载流子的散射2 2)晶格振动散射)晶格振动散射现在学习的是第21页,共90页224.2.2 4.2.2 载流子的散射载流子的散射现在学习的是第22页,共90页234.2.2 4.2.2 载流子的散射载流子的散射室温下电子热运动速度约为105m/s,由hk=m*v可估计电子波波长约为:mvmh*n810根据准动量守恒,声子动

11、量应和电子动量具同数量级,即格波波长范围也应是10-8m晶体中原子间距数量级为10-10m,因此起主要散射作用的是波长在几十个原子间距的长波。声学波散射声学波散射现在学习的是第23页,共90页244.2.2 4.2.2 载流子的散射载流子的散射(a)纵声学波纵波在晶体中引起原子间距的变动,从而引起能带极值的变动,即引起一个附加势场。研究表明,在能带具有单一极值的半导体中起主要散射作用的是:长纵声学波长纵声学波。现在学习的是第24页,共90页254.2.2 4.2.2 载流子的散射载流子的散射纵声学波使晶体中原子形成线度疏密相间的区域,造成晶体体积的局部压缩与膨胀,如图4-9(a)所示晶格原子的

12、疏密排列引起晶格势场有一个周期性的畸变,因而能带的能量将发生周期性的起伏,如图4-10所示对于载流子,就相当于存在一个附加的势能 现在学习的是第25页,共90页264.2.2 4.2.2 载流子的散射载流子的散射声学波散射概率与温度的关系:23spT横声学波引起一定的切变,不引起原子的疏密变化,因而不产生形变势但对Ge、Si等具有多能谷的情形,这一切变也引起能带极值的变化,起到一定的散射作用。现在学习的是第26页,共90页274.2.2 4.2.2 载流子的散射载流子的散射 光学波散射在离子晶体和极性半导体中,当温度较高时,长纵光学波有重要的散射作用。这是由于在极性或离子性半导体中光学波可建立

13、很强的偶极矩或使半导体极化,电子和光学波的作用比在非极性或非离子性半导体中强烈得多。如,对于离子晶体,在光学波中,两个离子向相反的方向振动,如图4-9(b),从而导致以半个波长为周期重复出现带正电和带负电的区域,如图4-11。现在学习的是第27页,共90页284.2.2 载流子的散射载流子的散射(b)纵光学波现在学习的是第28页,共90页294.2.2 4.2.2 载流子的散射载流子的散射 可以证明,离子性半导体中光学波对载流子的散射概率与温度的关系:TkhnTkhPlql0210230f11.0 变化到0.6其值值的缓缓变函T为为平均声子数为声子频率,0Tkh,fnlql散射几率随温度的变化

14、主要取决于平均声子数,其随温度按指数上升:1exp10aTkhnq1exp10aTkhPO现在学习的是第29页,共90页304.2.2 4.2.2 载流子的散射载流子的散射当长声学波和长光学波两种散射作用同时存在时,晶格振动对载流子的总散射概率为两种散射概率之和:0s1PPP对于不同的半导体,这两种散射的相对强弱不同:在共价结合的元素半导体中,如Si和Ge,长声学波的散射是主要的;在极性半导体中,长纵光学波的散射是主要的 现在学习的是第30页,共90页314.2.2 4.2.2 载流子的散射载流子的散射中性杂质散射:在温度很低时,未电离的杂质(中性杂质)的数目比电离杂质的数目大得多,这种中性杂

15、质也对周期性势场有一定的微扰作用而引起散射但它只在重掺杂半导体中,当温度很低,晶格振动散射和电离杂质散射都很微弱的情况下,才起主要的散射作用位错散射:位错线上的不饱和键具有受主中心作用,俘获电子后成为一串负电中心,其周围将有电离施主杂质的积累,从而形成一个局部电场,这个电场成为载流子散射的附加电场。3 3)其他散射机构)其他散射机构现在学习的是第31页,共90页324.2.2 4.2.2 载流子的散射载流子的散射c.等同能谷间散射:对于Ge、Si,导带结构是多能谷的,即导带能量极小值有几个不同的波矢值载流子在这些能谷中分布相同,这些能谷称为等同能谷对这种多能谷半导体,电子的散射将不只局限在一个

16、能谷内,而可以从一个能谷散射到另一个能谷,这种散射称为谷间散射 现在学习的是第32页,共90页33复习题复习题:什么是迁移率?为什么说电子的迁移率要比空穴迁移率大?为什么温度越高,电离杂质对载流子的散射越弱?在极性半导体中,为什么纵光学波而不是横光学波对载流子的散射是主要的?现在学习的是第33页,共90页34复习:复习:Evdnn和p分别称为电子迁移率和空穴迁移率。物理意义:表示在单位场强下电子或空穴所获得的平均漂移速度,单位为m2/Vs或cm2/Vs Evpp迁移率迁移率现在学习的是第34页,共90页35复习:复习:声学波散射概率与温度的关系:声学波散射概率与温度的关系:23spT23iip

17、TN电离杂质对载流子的散射概率电离杂质对载流子的散射概率:散射几率随温度的变化主要取决于平均声子散射几率随温度的变化主要取决于平均声子数,其随温度按指数上升数,其随温度按指数上升:1exp10aTkhPO现在学习的是第35页,共90页364.3 迁移率与杂质浓度和温度的关系迁移率与杂质浓度和温度的关系现在学习的是第36页,共90页374.3.1 4.3.1 迁移率的简单理论分析迁移率的简单理论分析平均自由时间平均自由时间:连续两次碰撞间的时间间隔。散射几率散射几率是载流子速度的函数。先不考虑电子的速度分布,即认为电子有统一的速度。平均自由时间和散射几率是描述散射过程的两个重要参量,以电子运动为

18、例来求两者关系。现在学习的是第37页,共90页384.3.1 迁移率的简单理论分析迁移率的简单理论分析设有N个电子以速度v沿某方向运动,N(t)表示在t时刻尚未遭到散射的电子数。则 t 到 tt 时间内被散射的电子数为N(t)Pt,即:tttttlimdttd0tPNNNN当t很小时,可以写为:tPtNttNtN)()()((4-27)(4-28)现在学习的是第38页,共90页394.3.1 4.3.1 迁移率的简单理论分析迁移率的简单理论分析0()exp()N tNPt式(4-28)的解为:(4-29)0exp()N PPt dt 是t0时未遭散射的电子数。所以在t到tdt时间内被散射的电子

19、数为:0N由于dt很小,因此这些粒子的平均自由时间为t。(4-30)现在学习的是第39页,共90页404.3.1 4.3.1 迁移率的简单理论分析迁移率的简单理论分析dtPtPtN)exp(0而这些粒子的总的自由时间为:(4-31)所有粒子的平均自由时间为:PdtPtPtNN1)exp(1000即:平均散射时间等于散射几率的倒数。现在学习的是第40页,共90页414.3.2 电导率、迁移率与平均自由时间的关系电导率、迁移率与平均自由时间的关系Etmqnx0 x根据载流子在电场中的加速以及它们的散射,可导出在一定电场下载流子的平均漂移速度,从而获得载流子的迁移率和电导率的理论式。nm 设沿x方向

20、施加电场E,且电子具有各向同性的有效质量 x0令在t0时,某个电子恰好遭到散射,散射后沿x方向的速度为 ,经过时间 t 后又遭到散射,在0t时间内作加速运动,第二次散射前的速度为:(4-32)现在学习的是第41页,共90页424.3.2 4.3.2 电导率、迁移率与平均自由时间的关系电导率、迁移率与平均自由时间的关系而这个电子获得的漂移速度为:nqEtm由于在tt+dt时间内受到散射的电子数为:0exp()N PPt dt这些电子的总的漂移速度为:nqEtm0exp()N PPt dt现在学习的是第42页,共90页434.3.2 4.3.2 电导率、迁移率与平均自由时间的关系电导率、迁移率与平

21、均自由时间的关系00dttexpPEtPmqnxx(4-33)对所有时间积分就得到N0个电子漂移速度的总和。再除以N0即得到平均漂移速度:假定每次散射后v0的方向完全无规则,多次散射后v0在x方向分量的平均值应为零,即:00 x现在学习的是第43页,共90页444.3.2 4.3.2 电导率、迁移率与平均自由时间的关系电导率、迁移率与平均自由时间的关系再利用得:nx1EmqPEmqnn式中n表示电子的平均自由时间。(4-34)PdtPtPtNN1)exp(1000现在学习的是第44页,共90页454.3.2 4.3.2 电导率、迁移率与平均自由时间的关系电导率、迁移率与平均自由时间的关系Ex得

22、到电子迁移率为:nnnmq同理,空穴迁移率为:pppmq(4-36)(4-35)迁移率与平均自由时间成正比,与有效质量成反比。根据迁移率的定义:现在学习的是第45页,共90页464.3.2 4.3.2 电导率、迁移率与平均自由时间的关系电导率、迁移率与平均自由时间的关系pp2nn2mpqmnq本征半导体:n型半导体:nn2nmnqp型半导体:pp2pmnqppnn2iimmqn将式迁移率的式子代入电导率描述式,得到同时含有两种载流子的混合型半导体的电导率:(4-37)(4-38)(4-39)现在学习的是第46页,共90页474.3.2 4.3.2 电导率、迁移率与平均自由时间的关系电导率、迁移

23、率与平均自由时间的关系设硅的等能面分布及外加电场方向如图所示。电子有效质量分别为mt和ml。不同极值的能谷中的电子,沿x,y,z方向的迁移率是不同。对等能面为旋转椭球面的多极值半导体,沿晶体的不同方向有效质量不同,所以迁移率与有效质量的关系较为复杂。下面以硅为例说明。现在学习的是第47页,共90页484.3.2 4.3.2 电导率、迁移率与平均自由时间的关系电导率、迁移率与平均自由时间的关系推导电导有效质量示意图对100 能谷中的电子,沿x方向的迁移率为:1=qnml其余能谷中的电子,沿x方向的迁移率为:2=3=qnmt(4-40)(4-41)现在学习的是第48页,共90页494.3.2 4.

24、3.2 电导率、迁移率与平均自由时间的关系电导率、迁移率与平均自由时间的关系x3x2x1Xq3nq3nq3nEEEJx321nq31ExcXnqEJ如令(4-42)(4-43)321c31比较以上两式,得:设电子浓度为n,每个能谷单位体积中有n/6个电子,电流密度Jx为:-电导迁移率(4-44)现在学习的是第49页,共90页504.3.2 4.3.2 电导率、迁移率与平均自由时间的关系电导率、迁移率与平均自由时间的关系cncmqtlcm2m131m1把电导迁移率仍写为如下形式:将1,2,3代入得到:(4-45)称mc为电导有效质量。对硅,00980190m.mm.mlt0260m.mc(4-4

25、6)现在学习的是第50页,共90页514.3.3 4.3.3 迁移率与杂质浓度和温度的关系迁移率与杂质浓度和温度的关系电离杂质散射:231iiTN23sT声学波散射:因为迁移率与平均自由时间成正比,而平均自由时间又是散射几率的倒数,根据各散射机构的散射几率与温度的关系,可以获得不同散射机构的平均自由时间与温度的关系:Ni 为电离杂质浓度。光学波散射:1exp00Tkhl忽略缓变函数f中的温度影响现在学习的是第51页,共90页52声学波散射:231iiTN电离杂质散射:23sT光学波散射:1exp00Tkhl(4-47)(4-48)可得迁移率与杂质浓度及温度的关系为:nnnmq由(4-49)4.

26、3.3 4.3.3 迁移率与杂质浓度和温度的关系迁移率与杂质浓度和温度的关系现在学习的是第52页,共90页53 ,3,2,1IPPII11I11总平均自由时间:迁移率:(4-50)若几种散射同时起作用时,则总的散射概率应该是各种散射概率的总和,即:(4-51)(4-52)4.3.3 4.3.3 迁移率与杂质浓度和温度的关系迁移率与杂质浓度和温度的关系现在学习的是第53页,共90页54多种散射机构同时存在时,与每种散射单独存在时比起来,平均自由时间变得更短了,且趋向于最短的那个平均自由时间;迁移率也更少了,且趋向于最少的那个迁移率在实际情况中,应找到起主要作用的散射机构,迁移率主要由它决定。结论

27、结论4.3.3 4.3.3 迁移率与杂质浓度和温度的关系迁移率与杂质浓度和温度的关系现在学习的是第54页,共90页554.3.2 4.3.2 电导率、迁移率与平均自由时间的关系电导率、迁移率与平均自由时间的关系23s1mqATi23imqBNT由式(4-52),总的迁移率可表示为:下面以掺杂Si、Ge半导体为例,定性分析迁移率随杂质浓度和温度的变化情况在这种半导体中,通常起主要作用的散射机构是声学波散射和电离杂质散射。23i231mqTBNAT(4-54)由式(4-47)和式(4-48)得:(4-53)现在学习的是第55页,共90页564.3.2 4.3.2 电导率、迁移率与平均自由时间的关系

28、电导率、迁移率与平均自由时间的关系对-族化合物半导体,如GaAs,光学波散射不可忽略,总的迁移率表示为:0si1111在室温下,杂质全部电离,因此杂质浓度越高,杂质散射越强,迁移率减小。如图4-13所示。讨论讨论现在学习的是第56页,共90页574.3.2 4.3.2 电导率、迁移率与平均自由时间的关系电导率、迁移率与平均自由时间的关系现在学习的是第57页,共90页584.3.2 4.3.2 电导率、迁移率与平均自由时间的关系电导率、迁移率与平均自由时间的关系当杂质浓度较低时当杂质浓度较低时(小于小于1017cm3),主要散射机构为声学波,电离杂质散射可,主要散射机构为声学波,电离杂质散射可忽

29、略,所以温度升高,迁移率迅速减小。如图忽略,所以温度升高,迁移率迅速减小。如图4-14所示。所示。当杂质浓度较高时当杂质浓度较高时(大于大于1019cm3),低温区,电离散射为主,因此温度升高,低温区,电离散射为主,因此温度升高,迁移率有所上升。高温区,声学波散射作用变显著,迁移率随温度升高而下降。迁移率有所上升。高温区,声学波散射作用变显著,迁移率随温度升高而下降。总之总之,在低温、高掺杂以电离杂质散射为主;在高温、低掺在低温、高掺杂以电离杂质散射为主;在高温、低掺杂以晶格散射为主。杂以晶格散射为主。现在学习的是第58页,共90页594.3.2 4.3.2 电导率、迁移率与平均自由时间的关系

30、电导率、迁移率与平均自由时间的关系图4-14 电子及空穴迁移率随温度和杂质浓度的变化关系现在学习的是第59页,共90页60材料材料电子迁移率电子迁移率(cm2/(V.s))电子迁移率电子迁移率(cm2/(V.s))锗38001800硅1450500砷化镓8000400300K时较纯半导体的迁移率时较纯半导体的迁移率现在学习的是第60页,共90页614.4 电阻率及其与杂质浓度和温度的电阻率及其与杂质浓度和温度的关系关系现在学习的是第61页,共90页624.4.1 4.4.1 电阻率表示式电阻率表示式混合型半导体:本征半导体:n型半导体:p型半导体:nnq1ppq1pnpqnq1pniiqn1n

31、q由 知,电导率是杂质浓度和温度的函数。可得不同类型半导体的电阻率表示式:1由关系式现在学习的是第62页,共90页4.4.2 4.4.2 电阻率和杂质浓度的关系电阻率和杂质浓度的关系现在学习的是第63页,共90页64对于杂质补偿的材料,在杂质饱和电离温度下:nADnqNN1ADNN若(4-63)ADNNpDApqNN1若(4-64)4.4.2 4.4.2 电阻率和杂质浓度的关系电阻率和杂质浓度的关系nDnqN1只掺n型杂质:PAPqN1只掺p型杂质:现在学习的是第64页,共90页65例题:求室温下本征硅的电阻率。若在本征硅中掺入百万分之一的硼,电阻率例题:求室温下本征硅的电阻率。若在本征硅中掺

32、入百万分之一的硼,电阻率是本征硅多少倍?是本征硅多少倍?解:室温本征硅的载流子浓度、电子和空穴的迁移率分别为:)(cm1087-39.nis)/V(cm13502ns)/V(cm5002p因此电阻率为:)cm(.)(.)(qnpnii519910334500135010611087114.4.2 4.4.2 电阻率和杂质浓度的关系电阻率和杂质浓度的关系现在学习的是第65页,共90页66掺入硼后,成为P型半导体。由于室温下杂质全部电离,因此载流子浓度为:)cm(NpA31662210510105查阅室温下硅的杂质浓度与迁移率的关系曲线(图4-13)知,此时空穴的迁移率为:s)/V(cm4002p

33、所以P型硅的电阻率为:)cm(.31040010611051pq11916PP6510401110334310.ip4.4.2 4.4.2 电阻率和杂质浓度的关系电阻率和杂质浓度的关系现在学习的是第66页,共90页674.4.2 4.4.2 电阻率和杂质浓度的关系电阻率和杂质浓度的关系对纯半导体材料,电阻率主要由本征载流子浓度ni决定随着温度上升ni急剧增加,而迁移率只稍有下降,本征半导体电阻率随温度增加而单调下降。对杂质半导体,有杂质电离和本征激发两个因素存在,又有电离杂质散射和晶格振动散射两种散射机构的存在,因而电阻率随温度的变化关系更为复杂.对只有一种杂质的硅样品,其变化情况如下图所示:

34、现在学习的是第67页,共90页684.4.2 4.4.2 电阻率和杂质浓度的关系电阻率和杂质浓度的关系AB段 温度很低,本征激发可忽略。载流子主要由杂质电离提供,载流子浓度随温度升高而增加;散射主要由电离杂质决定,迁移率随温度升高而增大,所以,电阻率随温度升高而下降 注:虽然温度升高,电离杂质浓度也在增加,但不起主要作用。D现在学习的是第68页,共90页694.4.2 4.4.2 电阻率和杂质浓度的关系电阻率和杂质浓度的关系BC段 杂质已全部电离,本征激发仍不显著,载流子饱和,晶格振动散射为主,迁移率随温度升高而降低,电阻率随温度升高而稍有增大 D现在学习的是第69页,共90页704.4.2

35、4.4.2 电阻率和杂质浓度的关系电阻率和杂质浓度的关系CD段 温度继续升高,本征激发很快增加,载流子的产生远超过迁移率的减小对电阻率的影响。这时,本征激发成为矛盾的主要方面。杂质半导体的电阻率经一个极大值之后将随温度的升高而急剧地下降,表现出同本征半导体相似的特性 D现在学习的是第70页,共90页71谢谢谢谢Thanks现在学习的是第71页,共90页补充知识补充知识晶格振动晶格振动现在学习的是第72页,共90页 晶体中的周期性排列的离子构成晶格;离子晶体中的周期性排列的离子构成晶格;离子在其平衡位置在作永不停息的振动。在其平衡位置在作永不停息的振动。晶格的振动影响着晶体各方面的性质如热学性晶

36、格的振动影响着晶体各方面的性质如热学性质、光学性质、电学性质和磁学性质等。质、光学性质、电学性质和磁学性质等。晶格振动相关知识介绍晶格振动相关知识介绍现在学习的是第73页,共90页 考虑一维单原子链:每个原子都相同,原子质量为考虑一维单原子链:每个原子都相同,原子质量为m m,各原子的平衡位置间距为各原子的平衡位置间距为a a。设设t t时刻第时刻第n n个原子相对于平衡位置的偏离为个原子相对于平衡位置的偏离为u un n。nn-2n+1n-1n+2unun+1un+2un-2un-1一、简谐近似一、简谐近似现在学习的是第74页,共90页平衡时,两个最近邻原子间势能为平衡时,两个最近邻原子间势

37、能为:原子偏离平衡位置时,相邻两原子间距为原子偏离平衡位置时,相邻两原子间距为:此时势能变为此时势能变为把势能在平衡位置把势能在平衡位置 附近作泰勒展开:附近作泰勒展开:其中其中取前三项有:取前三项有:现在学习的是第75页,共90页ddUdrdUfa22)(drUd 回复力为:回复力为:回复力常数:回复力常数:二、一维单原子链的振动二、一维单原子链的振动简谐近似下原子的运动方程简谐近似下原子的运动方程:现在学习的是第76页,共90页设方程组的解是一振幅为设方程组的解是一振幅为A,频率为频率为 的简谐振动的简谐振动:)(tqnainAeu2lqnaaqn2qqna 表示第表示第n个原子振动的初位

38、相。若第个原子振动的初位相。若第n和和n个原子的个原子的初位相满足:初位相满足:代表代表n和和n的两个原子的振动完全同步。的两个原子的振动完全同步。显然显然q相当于波矢:相当于波矢:现在学习的是第77页,共90页代入运动方程解得:代入运动方程解得:实际上代表一种频率为实际上代表一种频率为 的平面波,称为格波。的平面波,称为格波。波速(相速):波速(相速):qvp可以看出,格波的频率是波长的函数。上式代表一维布喇菲格子可以看出,格波的频率是波长的函数。上式代表一维布喇菲格子中的中的(波长与频率的关系波长与频率的关系)-q的关系为周期函数的关系为周期函数,周期为周期为2/a。现在学习的是第78页,

39、共90页现在学习的是第79页,共90页 qasq2若两个波矢若两个波矢q和和q满足:满足:则则q和和q对应的振动状态完全相同:对应的振动状态完全相同:n)tna q(i)tna q(insitqnainuAeAeeAeu2)(s为整数为整数)为了保证振动的单值性,即一个为了保证振动的单值性,即一个q对应一个对应一个un,把把q限制在限制在下列范围内:下列范围内:(-a,a现在学习的是第80页,共90页一维单原子链的色散关系(第一布里渊区)格波:晶格中的所有原子以相同频率振格波:晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡位动而形成的波,或某一个原子在平衡位置附近的振动是以波的形

40、式在晶体中传置附近的振动是以波的形式在晶体中传播形成的波。播形成的波。晶格中原子的振动;晶格中原子的振动;相邻原子间存在固定的位相。相邻原子间存在固定的位相。q的正负号说明:的正负号说明:正的正的q对应在某方向前进的对应在某方向前进的波,负的波,负的q对应于相反方向进对应于相反方向进行的波。行的波。现在学习的是第81页,共90页 结论结论 如果如果q-q =2 s/a(s为任意整数)这两种波矢对同一个为任意整数)这两种波矢对同一个原子所引起的振动完全相同。原子所引起的振动完全相同。对应某一确定振动状态,可以有无限多个波矢对应某一确定振动状态,可以有无限多个波矢q,它们,它们之间都相差之间都相差

41、2/a的整数倍。的整数倍。为了保证为了保证xn的单值性,把的单值性,把q值限制在值限制在(-/a,/a),其中其中a是该是该格子的晶胞常数,该范围正好在第一布里渊区。格子的晶胞常数,该范围正好在第一布里渊区。现在学习的是第82页,共90页说明格波是量子化的。说明格波是量子化的。iqNaniqNatqnaiNneueAeu)(理论上可用玻恩理论上可用玻恩-卡门边界条件:卡门边界条件:设实际晶体的长度是:设实际晶体的长度是:L=NaNnnuu则有:则有:1iqNae要求要求lNaql2因此:2102212其中:N,N,Nl LNaq22共有共有N个个q值(振动模):值(振动模):现在学习的是第83

42、页,共90页一维双原子链示意图一维双原子链示意图 三、一维双原子链的晶格振动三、一维双原子链的晶格振动2a2n2n+12n-12n-22n+2现在学习的是第84页,共90页其行波解为:其行波解为:为了保证振动的单值性,即一个为了保证振动的单值性,即一个q对应一对应一个个u,把把q限制在下列范围内:限制在下列范围内:22(-a,a代入运动方程得到色散关系为:代入运动方程得到色散关系为:一维双原子链的色散关系 现在学习的是第85页,共90页对应的格波称为声学波而因此称为光学波激发对应的格波可以用光来的频率高于,。声学波和光学波的振动示意图(a)声学支(b)光学支(和o代表两种不同的原子)声学波:相

43、邻两原子的振动方向相同。声学波:相邻两原子的振动方向相同。光学波:相邻两原子的振动方向相反。光学波:相邻两原子的振动方向相反。现在学习的是第86页,共90页现在学习的是第87页,共90页说明一维复式格子的说明一维复式格子的q只能取只能取N个不同的值,等于晶体包含的个不同的值,等于晶体包含的原胞数。原胞数。每一个波矢对应两个振动的角频率,或者说有两支格波,对应于每一个波矢对应两个振动的角频率,或者说有两支格波,对应于一个原胞内的两个原子的自由度总数。一个原胞内的两个原子的自由度总数。晶格振动频率的总数为晶格振动频率的总数为2N,等于晶体的自由度数目。,等于晶体的自由度数目。laNql22因此:2

44、102212其中:N,N,Nl LNaq22共有共有N个个q值:值:周期性边界条件:周期性边界条件:如果一维双原子链有如果一维双原子链有N个原胞,玻恩个原胞,玻恩-卡门边界条件为:卡门边界条件为:1)(212Nnnuu现在学习的是第88页,共90页对于对于N N个原胞组成的三维晶体,设每个原胞中有个原胞组成的三维晶体,设每个原胞中有n n个原子,该晶个原子,该晶体的晶格振动有以下三个一般结论:体的晶格振动有以下三个一般结论:(1 1)格波共有格波共有3n3n支,其中支,其中3 3支声频支,其余支支声频支,其余支 3(n-1)3(n-1)为光频支;为光频支;(2 2)每支格波有每支格波有N N个振动模;个振动模;(3 3)共有共有3nN3nN个振动模个振动模 四、三维晶格振动的一般结论四、三维晶格振动的一般结论现在学习的是第89页,共90页2022-9-5感谢大家观看感谢大家观看现在学习的是第90页,共90页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁