数学史题库(17页).doc

上传人:1595****071 文档编号:38585669 上传时间:2022-09-04 格式:DOC 页数:17 大小:197.50KB
返回 下载 相关 举报
数学史题库(17页).doc_第1页
第1页 / 共17页
数学史题库(17页).doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《数学史题库(17页).doc》由会员分享,可在线阅读,更多相关《数学史题库(17页).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-数学史题库-第 17 页数学史考试重点1. 简述数学史的定义及数学史课程的内容。 答: 数学史研究数学概念、数学方法和数学思想的起源与发展及其与社会政治经济和一般文化的联系。数学史课程的功能可以概括成以下四部分:(1) 掌握历史知识:通过学习关于数学的专门知识,更好的从整体上把握数学。 (2) 复习已有知识:按学科讲述学过的数学知识,系统的提高对该学科的理解。(3) 了解新的知识:通过学习数学各学科的发展,了解没有学过的学科的内容。(4) 受到思想教育:通过了解数学家为数学而奋斗的高尚品质,陶冶数学情操。2. 简述数学内涵的历史发展。答:数学的内涵随时代的变化而变化,一般可分为四个阶段。A

2、数学是量的科学:公元前4世纪。B 数学是研究现实世界空间形式与数量关系的科学;19世纪。C 数学研究各种量之间的关系与联系:20世纪50年代。D 数学是作为模式的科学:20世纪80年代。1. 简述河谷文明及其数学。答:历史学家往往把四大文明古国的文明称之为“河谷文明”,因为这些国家是在河流的入海口建立的。尼罗河孕育了埃及文明;底格里斯河、幼发拉底河孕育了巴比伦文明;黄河和长江孕育了中国文明;印度河和恒河孕育了印度文明。埃及、美索不达米亚的数学产生较早,纪元前已经衰微,而印度、中国的数学崛起较晚,却延续至中世纪。2. 简述纸草书与泥板文书中的数学。答: 古埃及人在一种纸莎草压制成的叶片上书写,幸

3、存至今,被称为纸草书。莱茵德纸草书(现存于伦敦大英博物馆)中有84个数学题目;莫斯科纸草书(现存于俄国普希金精细艺术博物馆)中有25个数学题目;还有其他纸草书。纸草书中的数学知识包括:(1)算术,包括加法运算、单位分数、十进制计数、位置法;(2)几何,包括面积、体积计算和四棱台体积公式。美索不达米亚人用尖芦管在湿泥板上写字,然后将湿泥板晒干或烘干,幸存至今,被称之为泥板文书。出土50万块其中数学文献300块。泥板文书中的数学包括:(1)记数,包括偰形文、60制、位值原理;(2)程序化算法,包括1.414213;(3)数表;(4)xpxq=0 ,x=a,X+X=a (5) 几何,测量、面积、体积

4、公式、相似形、勾股数值。代数学。1.简述几何三大问题及历史发展。答:用圆规和没有刻度的直尺完成作图(称为尺规作图);(1)画圆为方:作一个与给定圆面积相等的正方形;(2)倍立方体:求作一个正方体,使其体积等于已知正方体体积的两倍;(3)三等分角:分任意角为三等份角。 历史发展:从古代希腊开始,人们对三大问题做了不断的探索但没有解决;直到19世纪人们才能用代数学等的知识彻底解决了;彻底解决证明是不可能的,有的人不了解历史有时仍然盲目的研究它。 2.简述欧几里得的几何原本。 答:欧几里德集古代希腊论证数学之大成,写成第一部典范的数学著作几何原本。前六卷相当于几何内容。第1卷首先用23个定义给出了点

5、、钱、面、圆以及平行线等原始概念,接着提出了5个公社和5个公理,第2卷主要讨论几何代数,第3卷是与圆有关的一些问题,包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理,第4卷在引入了圆的内接和外切圆形的概念以后,讨论了给定圆的某些内接和外切正多边形的尺规作图问题,第5卷讨论了有关量的比例理论,第6卷主要是将激励理论应用于平面几何,其中包括相似三角形等。第7、8、9卷主要研究初等数论。第10卷讨论无理数。后3卷是立体几何的内容.1. 简述割圆术及中国古代数学家所计算的圆周率。答:(1)割圆术的要旨:就是用圆内接正多边形去逼近圆“割之弥细,所之弥少“。用圆内接正多边形的周长与面积近似作为圆的

6、周长与面积。2)刘徽计算到正192边形,得到圆周率约为3.14,以分数157/50近似代替圆周率,称之为徽率。祖冲之计算的圆周率3.1415926圆周率3.1415927以分数22/7近似代替圆周率称之为约率,以分数355/113近似代替圆周率称之为密率,又称之为祖率。2. 简述“天元术”与“四元术”。答:(1)天元术:解一元高次方程的方法,“立天元为某某”“相当于设X为某某”类似为代数中的列方程法。(2)四元术:解多元高次方程组的方法,以“天”、“地”、“人”、“物”来表示四个不同的未知量,并且用固定的格式求出来。1. 简述巴克沙拉里手稿与印度记数法。答: 公元前2世纪至公元3世纪的时期印度

7、人在桦树皮上记录了数学知识被自然界变迁埋在地下,1881年在巴克沙利村(今巴基斯坦西北地区)被挖掘出来从而称为巴克沙利手稿。它的主要内容是:分数 ,平方根,收支与利润的计算,比例计算,级数求和,代数方程(一次方程,二次方程),数学符号。现在用的计数法是印度人创造的: (1)公元前2世纪至公元3世纪在巴克沙利手稿中记录了完整的十进制计数法用“.”表示零;(2)公元9世纪“.”变为椭圆即现在的“。”记录在瓜廖尔石碑中;(3)公元11世纪有零号的印度数码和十进制记数法已成熟了;(4)公元8世纪传入阿拉伯,13世纪由阿拉伯传入欧洲,阿拉伯数码的名字由此而来。 2. 简述阿拉伯的代数学。 答: 阿拉伯的

8、数学成就首先表现在代数方面。阿拉伯数学家阿尔.花拉子米写了重要的代数著作被称为代数学之父,他的还原与对消计算概要一书论述了移向与合并同类项,将一元二次方程分成六种类型进行研究并给出了一般的代数解法及解法的几何证明。阿拉伯数学家奥玛.海雅姆对代数学最杰出的贡献是用圆锥曲线解三次方程,他将求方程转化为与半圆 的支点的横坐标。1. 简述欧洲文艺复兴时期的代数学。答:欧洲在数学上的推进从代数学开始,人们集中研究三、四次方程尤其是三次方程。意大利数学家费罗、塔尔塔利亚各自得到了三次方程的求根公式,卡尔丹将该公式发表在他的著作大法中后人称为卡尔丹公式,不久费拉里找到了四次方程的解法。法国数学家韦达首先把数

9、学符号系统化从而导致代数在性质上产生重大变革,他在分析术引论一书中,第一次有意识的使用字母与符号,使代数成为研究一般类型的式子与方程的学问。2. 简述解析几何的产生。答:法国数学家奥雷斯姆在其著作论形态幅度中借用“经度”“纬度”来描述所谓的图线相当于纵坐标与横坐标。法国数学家笛卡尔的方法论一书的附录共3个,其中之一为几何学,将方程与曲线对应使几何问题数学化。法国数学家费马在其论平面与立体的轨迹引论一书中定义了曲线提出并使用了坐标的概念。 由于数学家特别是上述三位数学家的工作使解析几何诞生了。1.简述微积分先驱数学家的贡献。答:微积分的天才思想在古代数学家那就已产生。古希腊数学家阿基米德,中国数

10、学家刘徽、祖冲之父子,求面积、体积产生积分学的萌芽;古希腊及中国关于求变化率、切线产生微分学的萌芽;笛卡尔、费马创造的解析几何为微积分的创立搭设舞台。在牛顿、莱布尼茨之前半个多世纪很多数学家都投入到微积分的研究之中,其中主要的有(一)开普勒对旋转体的体积的研究;(二)卡瓦列里对不可分原理的研究;(三)简卡尔对求切线的“圆法”的研究;(四)费马对极大与极小值的求法的研究;(五)巴罗对微分三角形的研究;(六)沃利斯对无穷算数的研究。正是由于众多数学家都研究了微积分的问题才使牛顿和莱布尼兹创立了微积分。 2.简述牛顿的微积分与莱布尼茨的微积分。答:牛顿是在笛卡尔的几何学和沃利斯的“无穷算数”的基础上

11、创立微积分理论。1665年11月牛顿建立了“正流数术”;1666年5月牛顿创立了“反流数术”;1666年10月牛顿写了总结性论文流数简论。牛顿继续研究流数术相继完成了三篇论文分析学、流数法、求积术,并且以极限法作为微积分的基础,牛顿在自然哲学的数学原理一书中最早公开表述微积分学说。莱布尼兹从几何问题出发,发现了求曲线的切线与面积的互逆关系。1684年他发表了一种求极大与极小值和求切线的新方法,1686年他发表了深奥的几何与不可分量及无限的分析。1.简述微积分的发展。答:大不列颠以泰勒、麦克劳斯、棣莫弗、斯特林继承和发展了牛顿创立的微积分;欧洲大陆以伯努利家族、欧拉、达朗贝尔、拉格朗日为代表继承

12、和发展了莱布尼茨创立的微积分。微积分的发展分为5个方面:(1)积分技术与椭圆积分:包括变量替换、部分分式积分,椭圆积分;(2)微积分向多元函数的推广:包括偏导数和多重积分;(3)无穷级数理论:包括收敛性、调和级数、判别法;(4)函数概念的深化;(5)微积分严格化的尝试:其中主要著作有达朗贝尔的科学、艺术和工艺百科全书,拉格朗日的解析函数论。代表学科:分析学和分析。2.简述分析学在18世纪的新分支。答:分析学在18世纪有3个分支:(一)常微分方程:包括积分因子法,变易系数法。例如:微分方程,常微分方程。(二)偏微分方程(又称数学物理方程)这一分支有两位著名的数学家进行了研究:其中达朗贝尔研究弦的

13、振动,得出所满足的微分方程,并求出某种形式的通解:拉普拉斯研究弦的振动,得出所满足的偏微分方程(位势方程),通常称为拉普拉斯方程。(三)变分法:欧拉对于变分问题给出了一般的处理,得出了变分法的基本方程,常称为“欧拉方程”。1. 简述伽罗瓦对代数学的贡献。答:法国数学家伽罗瓦的工作原理是在拉格朗日、高斯、柯西、阿贝尔等人的工作启发之下完成的。他在拉格朗日的基础上提出了“置换群”、“子群”、“正规子群”、“极大正规子群”等全新的数学概念。伽罗瓦研究根的排列,实际上建立了置换群。1829-1831年,伽罗瓦发现了代数方程可用根式解的基本定律伽罗瓦基本定律。判断根式可解的充要条件。问题转化为域,建立了

14、子域与子群的对应关系,给出了根式可解得充要条件,开辟了代数学的新纪元。2.简述19世纪的数论。答:高斯1801年著书算数研究对代数数论进行了总结并发长了此数论。高斯研究了同余理论、复整数型的理论,使数论成为现代数学的一个重要分支,复整数理论开辟了代数理论。库默尔对代数数论作出了重要贡献。例如:费马定理的证明,唯一因子分解定理和理想数理论。1.简述非欧几何的产生。 答:研究欧几里德平行公社由来已久,19世纪进入研究的活跃时期。克里格尔对平行公理能否有其他公理推出表示怀疑。兰伯特通过替代平行公社而展开无矛盾的几何学著作平行线理论。高斯建立并相信一种逻辑上相容并且可以描述物质空间像欧氏几何一样正确的

15、几何学。. 波约(匈牙利)著绝对空间的几何学,给出了非欧几何。罗巴切夫斯基是俄国数学家,他1826年发表简要论述平行线定理的一个严格证明,1829年完成论几何原理;1835-1838年完成具有完备的平行线理论的新几何原理,1840年完成平行理论的几何研究,他最早发表并捍卫自己的理论,被成为罗巴切夫斯基几何,简称为罗氏几何。2.克莱茵的爱尔朗根纲领。答:各国数学家克莱茵于1872年在爱尔朗根大学发表的数学教授就职演说称之为“爱尔朗根纲领”。“爱尔朗根纲领”阐述里几何学统一的思想:所谓几何学,就是研究几何图形对某类变换群保持不变性质的学科,或者说,任何一种几何学只是研究与特定变换群有关的不变量,从

16、而,变化群本的任意一种分类也就对应于几何学的一种分类。1. 简述柯西与魏尔斯特拉斯对分析学严格化的贡献。答:柯西是十九世纪前半世纪的法国著名数学家。他与1817年出版了纯粹分析证明一书,又于1821年和1823年分别出版了分析教程和无穷小计数教程。他特别是对变量、函数、极限、无穷小量、连续函数、导数与微分、积分和级数的研究做出了突出贡献。威尔斯特拉斯创造了一套科学的 语言,重新定义了极限、连续、导数等分析基本概念,引进了一致收敛性,分析学今天的严格形式被确定。1. 简述20世纪纯粹数学发展的主要趋势。答:20世纪纯粹数学发展的主要趋势是更高的抽象性,更强的统一性,更深入的基础探讨。更高的抽象性

17、:集合论观点的渗透和公理化的应用,使20世纪纯粹数学具有更高的抽象性,以实变函数、泛函分析、拓扑学、抽样代数具有标志性的四大抽象分支为典型证明与代表。更强的统计性:不同学科的相互渗透、结合的趋势、不同分支领域的数学思想与数学方法的相互融合。更深入的基础探讨:对数学基础的更深入的探讨及由此引起的数理逻辑的发展。2. 简述关于数学基础的三大派流。答:数学基础的三大流派是逻辑主义、直觉主义、形式主义。逻辑主义以英国的罗素为代表,认为数学就是逻辑,全部数学可以由逻辑推导出来。直觉主义以荷兰的布劳威尔为代表,认为数学独立于逻辑,坚持数学对象的“构造性”主义。形式主义以德国的希尔伯特为代表,试图将数学彻底

18、形式化为一个系统,数学语句的公式表达,用形式的程序表示推理。1.简述20世纪作为应用数学的新世纪。答:在20世纪,数学产生了空前广泛的应用。(1) 数学的应用突破了传统的范围,而向人类几乎所有的知识领域渗透,产生了诸如数理化学、数理经济学、数理心理学等交叉学科。(2) 纯粹数学的几乎所有分支都获得了应用,其中最抽象的一些分支也参与了渗透,例如,数论在密码技术、卫星信号传递、计算机、量子力学等学科中发挥重要作用。(3) 现代数学对生产技术的应用越来越直接,例如,数值模拟已成为飞行器设计的有效工具,应用于技术部分以替代耗资巨大的实验。(4)现代数学产生了一些相对独立的应用学科,如数理统计、运筹学、

19、控制论等。2. 简述计算机对数学的影响。答:计算机对数学产生了重要影响。(1)计算数学的兴旺计算机,促进了各种计算方法的产生,等形计算力学等数学分支。(2)纯粹数学研究与计算机,用计算机解决了重大大数学问题,如证明四色定理,计算机依无可比比拟的计算速度和图像显示动能,帮助数学家猜测新的事实,发现新的定理,如孤立子、混沌等。(3)计算机科学中的数学,计算机呼唤新的数学思想,如组合数学、模糊数学、机器证明等,随着计算机科学的发展而进一步发展。1.简述四色定理的证明过程。答:四色问题也称为四色猜想或四色定理:为了给任意一张地图着色,使有公共边界的任何区域颜色不同,至多需要四种颜色。1852年,英国大

20、学生古德里首先提出,1878年法国数学家凯莱的文章论地图着色掀起了一场四色问题热,1879年英国肯波引入“不可避免集”与“可约性”两个关键概念,1900年希伍德证明五色定理,1969年德国希斯找到解决问题的“放电算法”。1976年6月,美国哈肯与阿佩尔借助计算机最终给与证明,计算机时间1200小时,计算机程序先后修改了500多次。2.简述有限单群分类定理的证明过程。答:如同数论中的素数,物理学中的基本粒子,单群是群论的基本构件,认识有限群转化为认识有限单群。有限单群分类定理:有限单群包括十八个正规无限族(成族出现的群)和26个散在单群(单独出现的群),再没有其他的有限单群了。1954年布饶尔的

21、对合中心化子定理成为单群分类工作的新起点。1962年费特和汤普逊证明了:所有非交换单群都是偶数个元素的群,1972年弋伦斯坦提出解决分类问题的16步纲领,发起最后攻坚战,1980年格里斯找到最后一个散在单群“大魔”,宣告分类定理证明结束。1.简述数学对人类三次产业革命的影响。答:数学发展与社会进步互相促进,数学对社会进步产生了深刻影响,包括物质文明和精神文明。 英国瓦特发明蒸汽机以此为代表的第一次产业革命中,利用微积分研制出了计算机;以发动机、电动机和电气通信为标志的第二次产业革命以数学分析和场论为基础建立了电磁理论;以电子计算机、原子能、空间技术为标志的第三次产业革命根据现代数学的各个分支发

22、现了智能公式和控制论。数学中的探索精神对精神文明产生深刻影响。天文学上利用微积分的知识发现了海王星。相对时空论中用到了非欧几何。2.简述菲尔兹奖与沃尔夫奖。答:菲尔兹奖是由加拿大数学家菲尔兹倡议设立,由国际数学联盟评选,在国际数学大会(每四年)颁发,发给40岁以下的年轻人,素有数学诺贝尔奖之称,声誉高但奖金少。沃尔夫奖是犹太工业家沃尔夫捐巨资成立沃尔夫基金会,设立包括数学在内的五种科学奖,由著名数学家组成的评选委员会评选,每年颁发一次,不限年龄,但已获奖的人多为60岁以上者,奖金数额高1.简述西方数学在中国传播的两次高潮。答:西方数学在中国传播出现过两次高潮。第一次高潮的时间是17世纪至19世

23、纪初,是以1606年徐光启译几何原本前6卷为标志的,主要内容是初等数学包括三角学、透视学和代数学。19世纪中叶开始西方数学在中国的早期传播出现第二次高潮,以初等数学、解析几何、微积分、无穷级数和概率论等为主要内容,其标志是1859年出版的代数积拾级和1880年出版的决疑数学。2.简述中国数学会的建立过程。答:中小学数学团体在辛亥革命后就已出现并且有好几处,以1929年在北京建立的中国数学会为标志。中国数学会于1934年开始筹备,1935年7月25日在上海正式成立,会议主要议程是交流论文、选举理事和通过章程等,其中出席会议的有33人。中国数学会成立后1936年就出版了两本刊物,一本是中国数学会报

24、后来发展成为现代的数学学报,另一本是中国数学杂志发展成为现代的数学通报。数学史题库选择题(每题2分)1.对古代埃及数学成就的了解主要来源于( A )A.纸草书 B.羊皮书 C.泥版 D.金字塔内的石刻2.对古代巴比伦数学成就的了解主要来源于( C )A.纸草书 B.羊皮书 C.泥版 D.金字塔内的石刻3.九章算术中的“阳马”是指一种特殊的( B )A.棱柱 B.棱锥 C.棱台 D.楔形体4.九章算术中的“壍堵”是指一种特殊的( A )A.三棱柱 B.三棱锥 C.四棱台 D.楔形体5.射影几何产生于文艺复兴时期的( C )A.音乐演奏 B.服装设计 C.绘画艺术 D.雕刻艺术6.欧洲中世纪漫长的

25、黑暗时期过后,第一位有影响的数学家是( A )。A.斐波那契 B.卡尔丹 C.塔塔利亚 D.费罗7.被称作“第一位数学家和论证几何学的鼻祖”的数学家是( B )A.欧几里得 B.泰勒斯 C.毕达哥拉斯 D.阿波罗尼奥斯8.被称作“非欧几何之父”的数学家是(罗巴切夫斯基)A.波利亚 B.高斯 C.魏尔斯特拉斯 D.罗巴切夫斯基9.对微积分的诞生具有重要意义的“行星运行三大定律”,其发现者是(开普勒)A.伽利略 B.哥白尼 C.开普勒 D.牛顿10.公元前4世纪,数学家梅内赫莫斯在研究下面的哪个问题时发现了圆锥曲线?(倍立方体)A.不可公度数 B.化圆为方 C.倍立方体 D.三等分角11.印度古代

26、数学著作计算方法纲要的作者是(马哈维拉)A.阿耶波多 B.婆罗摩笈多 C.马哈维拉 D.婆什迦罗12.最早证明了有理数集是可数集的数学家是(康托尔)A.康托尔 B.欧拉 C.魏尔斯特拉斯 D.柯西13.下列哪一位数学家不属于“悉檀多”时期的印度数学家?( C )A.阿耶波多 B.马哈维拉C.奥马.海亚姆 D.婆罗摩笈多14.在1900年巴黎国际数学家大会上提出了23个著名的数学问题的数学家是( A )A.希尔伯特 B.庞加莱 C.罗素 D.F克莱因15.与祖暅原理本质上一致的是( D )A.德沙格原理 B.中值定理 C.泰勒定理 D.卡瓦列里原理16世界上第一个把计算到3.14159263.1

27、415927的数学家是( B )A.刘徽 B.祖冲之 C.阿基米德 D.卡瓦列里17我国元代数学著作四元玉鉴的作者是( C ) A.秦九韶 B.杨辉 C.朱世杰 D.贾宪 18就微分学与积分学的起源而言( A )A.积分学早于微分学 B.微分学早于积分学C.积分学与微分学同期 D.不确定19在现存的中国古代数学著作中,最早的一部是( D ) A.孙子算经 B.墨经 C.算数书 D.周髀算经20发现著名公式ei=cos+isin的是( D )A.笛卡尔 B.牛顿 C.莱布尼茨 D.欧拉 21中国古典数学发展的顶峰时期是( D )A.两汉时期 B.隋唐时期 C.魏晋南北朝时期 D.宋元时期22最早

28、使用“函数”(function)这一术语的数学家是( A )A.莱布尼茨 B.约翰伯努利 C.雅各布伯努利 D.欧拉 231834年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是( B ) (注意,书上给的例子是1861年魏尔斯特拉斯给出的,但不是历史上最早的)A.高斯 B.波尔查诺 C.魏尔斯特拉斯 D.柯西 24大数学家欧拉出生于( A )A.瑞士 B.奥地利 C.德国 D.法国 25首先获得四次方程一般解法的数学家是( D )A.塔塔利亚 B.卡当 C.费罗 D.费拉利 26九章算术的“少广”章主要讨论( D )A.比例术 B.面积术 C.体积术 D.开方术 27最早采

29、用位值制记数的国家或民族是( A )A.美索不达米亚 B.埃及 C.阿拉伯 D.印度 28数学的第一次危机的产生是由于( B )A.负数的发现 B.无理数的发现 C.虚数的发现 D.超越数的发现29给出“纯数学的对象是现实世界的空间形式与数量关系”这个关于数学本质的论述的人是( B )A.笛卡尔 B.恩格斯 C.康托 D.罗素30提出“集合论悖论”的数学家是( B )A.康托尔 B.罗素 C.庞加莱 D.希尔伯特填空题(每空2分)1古希腊著名的三大尺规作图问题分别是: 化圆为方、 倍立方体、 三等分角 .2 欧几里得 是古希腊论证数学的集大成者,他通过继承和发展前人的研究成果,编撰出旷世巨著原

30、本.3中国古代把直角三角形的两条直角边分别称为 勾 和 股 ,斜边称为 弦 .4“万物皆数”是 毕达哥拉斯 学派的基本信条.5毕达哥拉斯学派的基本信条是 万物皆数 .61687年,牛顿的 自然哲学的数学原理出版,它具有划时代的意义,是微积分创立的重要标志之一,被爱因斯坦盛赞为“无比辉煌的演绎成就”.71637年,笛卡儿发表了他的哲学名著 更好地指导推理和寻求科学真理的方法论,解析几何的发明包含在这本书的附录 几何学 中.8非欧几何的创立主要归功于数学家 高斯 、 波约、 罗巴切夫斯基 .9解析几何的发明归功于法国数学家 笛卡尔 和 费马 .11徽率、祖率(或密率)、约率分别是 157/50 、

31、 355/113 和 22/7 .12海岛算经的作者是_刘徽_,四元玉鉴的作者是_朱世杰_.13秦九韶的代表作是_数书九章,他的提出_正负开方术_是求高次代数方程的完整算法,他提出的_大衍总数术_是求解一次同余方程组的一般方法.14我国古代数学家刘徽用来推算圆周率的方法叫_割圆术_术,用来计算面积和体积的一条基本原理是_出入相补原理_原理.15对数的发明者_纳皮尔_是一位贵族数学家,_拉普拉斯_曾赞誉道:“对数的发明以其节省劳力而延长了天文学家的寿命”.16.历史上第一篇系统的微积分文献流数简论的作者是_牛顿_,第一个公开发表微积分论文的数学家是_莱布尼茨_.17.古代美索不达米亚的数学常常记

32、载在_泥版_上,在代数与几何这两个传统领域,他们成就比较高的是_代数_领域.18阿拉伯数学家_花拉子米_的还原与对消计算概要第一次给出了_一元二次_方程的一般解法,并用几何方法对这一解法给出了证明.19.“非欧几何”理论的建立源于对欧几里得几何体系中_第五公设_的证明,最先建立“非欧几何”理论的数学家是_高斯_.20起源于“英国海岸线长度”问题的一个数学分支是_分形几何_,它诞生于_20_世纪.21四色问题是英国青年大学生_古德里_于_19_世纪提出的.22在代数和几何这两大传统的数学领域,古代埃及的数学成就主要在_几何_方面,美索不达米亚的数学成就主要在_代数_方面.23用圆圈符号“O”表示

33、零,可以说是_印度数学_的一大发明,有零号的数码 和十进位值记数在公元8世纪传入阿拉伯国家,后又通过阿拉伯人传至_欧洲_.24希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即:_相容性_、_独立性_、_完备性_.25被称为“现代分析之父”的数学家是_魏斯特拉斯,被称为“数学之王”的数学家是_高斯_.26.“数学无王者之道”,这里的“王”是指 捷径 .27.被著名数学史家贝尔称为“最伟大的埃及金字塔”是指 莫斯科纸草书中的截棱锥体28. 刘徽 是中算史上第一个建立可靠理论来推算圆周率的数学家.判断题,请在括号内划或(每题2分):1.分别在直角三角形三边向外作正五边形,则两直角边上的

34、正五边形的面积之和等于斜边上的正五边形的面积. ( 对 )2.分别以直角三角形的三边为边向外作三个相似的多边形,则两直角边上的多边形的面积之和等于斜边上的多边形的面积. ( 错 )3.几何原本传入中国,首先应归功于数学家李善兰. ( 错 )4几何原本传入中国,首先应归功于数学家徐光启和利玛窦. ( 对 )5我国的古代数学是建立在算法基础之上的,这可以从中国古代数学家的著作中看出端倪,其中最具代表性的就是九章算术. ( 对 )6牛顿创造了现在通用的微分和积分的符号. ( 错 )7莱布尼茨创造了现在通用的微分和积分的符号. ( 对 )8秦九韶的代表作是九章算术. ( 错 )9朱世杰的代表作是四元玉

35、鉴和算法统宗. ( 错 )10数学符号系统化首先归功于数学家花拉子米. ( 错 )11毕达哥拉斯学派是一个带有浓厚宗教色彩的严密组织,属于唯心主义学派,在古希腊有很大的影响. ( 对 )12笛卡尔的方法论是一部伟大的数学著作. ( 错 )13欧几里得在公元前600年左右写了几何原本. ( 错 )14黎曼几何在二维的情形最初是高斯发展的. ( 对 )15黎曼所创立的几何把几何整体化,可以说是几何学的第四个发展. ( 错 )16牛顿是在其力学研究中得到微积分成果的,所以这些成果明显地带有力学的痕迹. ( 错 )171908年,策梅罗提出公理化集合论,将原本直观的集合概念建立在严格的公理基础之上,解

36、决了第二次数学危机. ( 错 )18球面三角形三内角之和小于180. ( 错 )简答或证明(每小题5分):1.请列举九章算术各章的名称和主要研究内容.2.请列出“算经十书”所包括的古算书书名.3.请简述几何原本和九章算术的思想方法特点,并比较两者的异同.4.请简述微积分诞生的酝酿时期微分学的基本问题和积分学的基本问题.5.请简述开普勒利用“无限小元素和”推导球体积公式的方法.6.请给出勾股定理的两种证明方法,要求画图并写出简要推导过程.7.用九章算术中的盈不足术解下面问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何”?8.推导三次方程x3=px+q的求根公式卡尔丹公式.9.

37、简述费马大定理的具体内容,并指出它是哪一年被提出的,又在何时被解决.10.在牛顿和莱布尼茨之前有许多数学家曾对微积分的创立作出过重要贡献,请列举其中的两位,并指出他们的主要贡献.11.简述莱布尼茨生活在哪个世纪、所在国家及在数学上的主要成就.12.花拉子米是什么时代、什么地方的数学家,简述他的代表著作和重要数学贡献.13.写出数学基础探讨过程中所出现的“三大学派”的名称、代表人物、主要观点.14.朱世杰是什么时代、什么地方的数学家,简述他的代表著作和重要数学贡献.15.秦九韶是什么时代、什么地方的数学家,简述他的代表著作和重要数学贡献.16.简述笛卡尔的生活年代、所在国家、代表著作以及在数学上

38、的主要成就.17.已知三角形三边长为a,b,c,请推导秦九韶公式,并将该公式变形为海伦公式.18.请简述阿基米德推导球体积公式的方法.19.请简述刘徽证明阳马的体积公式为其三条直角边乘积的三分之一的过程.20.试证明素数有无穷多个.21.试证明不是有理数.22.写出斐波那契数列及其通项公式,并说明这个数列与“黄金分割率”的关系.23.三次数学危机分别发生在何时?主要内容是什么?是如何解决的?24. 牛顿、莱布尼兹微积分思想的异同有哪些?25.数系扩充的原则是什么?26.几何原本中的5条公理和5条公设分别是什么 27.四元数系的发现者是谁?这一发现的意义是什么?28.简述阿波罗尼奥斯的生活时代及

39、主要数学成就?29.解方程 .30.试论述“论证几何学的鼻祖”的主要数学成就.31.设最初的正三角形的边长为1,试推导科奇雪花经过n次变换以后的周长公式,以及当n时科奇雪花面积的极限值.论述题(20分):1.论述数学史对数学教育的意义和作用.2.论述东方古代数学和西方古代数学各自的主要特征、对现代数学的影响,及其对数学教育的启示.3. 试论述三角学的发展历史及其对高中三角函数教学的启示.4. 集合论的发展经历了哪几个阶段?5. 中国古代最早对勾股定理作出证明的数学家是三国时期的赵爽。请作出赵爽证明勾股定理的“弦图”,并叙述其证明方法.6.试论述探究勾股定理的证明在初中数学教学中的意义,并给出勾

40、股定理的三个推广结论.7. 试论述数学如何促进社会进步.简答题1.请列举九章算术各章的名称和主要研究内容.2.请列出“算经十书”所包括的古算书书名.周髀算经、九章算术、海岛算经、孙子算经、张邱建算经、五曹算经、五经算术、夏侯阳算经、缀术和缉古算经3.请简述几何原本和九章算术的思想方法特点,并比较两者的异同九章算术思想方法的特点:开放的归纳体系、算法化的内容、模型化的方法;几何原本思想方法的特点:封闭的演绎体系、抽象化的内容、公理化的方法;A:九章算术与几何原本相对照,可以发现从形式到内容都各有特色和所长,形成东、西方数学的不同风格。B;几何原本a以形式逻辑方法把全部内容贯穿起来、b极少提及应用

41、问题、c以几何为主略有点算术内容、九章算术a按问题的性质和解法把全部内容分类编排、b解应用问题为主、c包含了算术、代数、几何等我国当时数学的全部内容。相同之处:集数学成就之大成者,成书历史久远,影响巨大,成为后世的教科书。不同之处:几何原本是西方数学最早形成的演绎体系,采用“定义公理、公设定理” 的公理化方法,注重逻辑的严密性,开创了推理证明的先河。九章算术:是中国由个别到一般的归纳体系,采用“问题答案算法”的体例,追求实用、讲究算法,但不注重逻辑结构。 4.请简述微积分诞生的酝酿时期微分学的基本问题和积分学的基本问题.微分学基本问题:a瞬时变化率问题b任意曲线的切线问题c函数极大值、极小值问

42、题积分学的基本问题:面积、体积、曲线长、重心和引力计算5.请简述开普勒利用“无限小元素和”推导球体积公式的方法.开普勒方法的要旨:用无数个同维无限小元素之和来确定曲边形的面积及旋转体的体积。推导球体体积方法:球的体积是无数个小圆锥的体积的和,这些圆锥的顶点在球心,底面则是球面的一部分;又把圆锥看成是极薄的圆盘之和,并由此计算出它的体积,然后进一步证明球的体积是半径乘以球面面积的三分之一。9.简述费马大定理的具体内容,并指出它是哪一年被提出的,又在何时被解决方程xn+yn=zn对任意大于2的自然数n无非零整数解,1670年被提出,1994年被证明10.在牛顿和莱布尼茨之前有许多数学家曾对微积分的

43、创立作出过重要贡献,请列举其中的两位,并指出他们的主要贡献. a开普勒与旋转体体积(5题)费马求极大值和极小值方法 按费马的方法。设函数f(x)在点a处取极值,费马用“a+e”代替原来的未知量a,并使f(a+e)与f(a)逼近,即: f(a+e)f(a) 这里所提到的“e”就是后来微积分学当中的“ 11简述莱布尼茨生活在哪个世纪、所在国家及在数学上的主要成就。 答:莱布尼茨于 1646 年出生在德国的莱比锡,其主要数学成就有:从数列的阶差入手发明了微积分;论述了积分与微分的互逆关系;引入积分符号;首次引进 “函数”一词;发明了二进位制,开始构造符号语言,在历史上最早提出了数理逻辑的思想。12花拉子米(什么时代、什么地方的数学家、代表著作和重要贡献)。 答

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁