高等数学--练习题(24页).doc

上传人:1595****071 文档编号:38562456 上传时间:2022-09-04 格式:DOC 页数:24 大小:775.50KB
返回 下载 相关 举报
高等数学--练习题(24页).doc_第1页
第1页 / 共24页
高等数学--练习题(24页).doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《高等数学--练习题(24页).doc》由会员分享,可在线阅读,更多相关《高等数学--练习题(24页).doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-高等数学-练习题-第 195 页习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第卦限;点B在第卦限;点C在第卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.

2、4. 求下列各对点之间的距离:(1) (0,0,0),(2,3,4); (2) (0,0,0), (2,-3,-4);(3) (-2,3,-4),(1,0,3); (4) (4,-2,3), (-2,1,3).解:(1)(2) (3) (4) .5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故 6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则解得 即所求点为M(0,0,).7. 试证:以三点A(4,1,9),B(10,-1,6

3、),C(2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故ABC为等腰直角三角形.8. 验证:.证明:利用三角形法则得证.见图7-1 图7-19. 设试用a, b, c表示解:10. 把ABC的BC边分成五等份,设分点依次为D1,D2,D3,D4,再把各分点与A连接,试以,表示向量,和.解:11. 设向量的模是4,它与投影轴的夹角是60,求这向量在该轴上的投影.解:设M的投影为,则12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A的坐标.解:设此向量的起点A

4、的坐标A(x, y, z),则解得x=-2, y=3, z=0故A的坐标为A(-2, 3, 0).13. 一向量的起点是P1(4,0,5),终点是P2(7,1,3),试求:(1) 在各坐标轴上的投影; (2) 的模;(3) 的方向余弦; (4) 方向的单位向量.解:(1)(2) (3) (4) .14. 三个力F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力R的大小和方向余弦.解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)15. 求出向量a= i +j+k, b=2i-3j+5k和c =-2i-j+2k的模,并分别用单位向量来表

5、达向量a, b, c.解:16. 设m=3i+5j+8k, n=2i-4j-7k, p=5i+j-4k,求向量a=4m+3n-p在x轴上的投影及在y轴上的分向量.解:a=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k在x轴上的投影ax=13,在y轴上分向量为7j.17. 向量r与三坐标轴交成相等的锐角,求这向量的单位向量er.解:因,故,(舍去)则.18. 已知两点M1(2,5,-3),M2(3,-2,5),点M在线段M1M2上,且,求向径的坐标.解:设向径=x, y, z因为,所以,故=.19. 已知点P到点A(0,0,12)的距离是7,的方向余弦是

6、,求点P的坐标.解:设P的坐标为(x, y, z), 得又故点P的坐标为P(2,3,6)或P().20. 已知a, b的夹角,且,计算:(1) ab; (2) (3a-2b)(a + 2b).解:(1)ab =(2) 21. 已知a =(4,-2, 4), b=(6,-3, 2),计算:(1)ab; (2) (2a-3b)(a + b); (3)解:(1)(2) (3) 22. 已知四点A(1,-2,3),B(4,-4,-3),C(2,4,3),D(8,6,6),求向量在向量上的投影.解:=3,-2,-6,=6,2,323. 设重量为100kg的物体从点M1(3, 1, 8)沿直线移动到点M2

7、(1,4,2),计算重力所作的功(长度单位为m).解:取重力方向为z轴负方向,依题意有f =0,0, -1009.8s = =-2, 3,-6故W = fs=0, 0,-980-2, 3,-6=5880 (J)24. 若向量a+3b垂直于向量7a-5b,向量a-4b垂直于向量7a-2b,求a和b的夹角.解: (a+3b)(7a-5b) = (a-4b)(7a-2b) = 由及可得:又,所以,故.25. 一动点与M0(1,1,1)连成的向量与向量n=(2,3,-4)垂直,求动点的轨迹方程.解:设动点为M(x, y, z)因,故.即2(x-1)+3(y-1)-4(z-1)=0整理得:2x+3y-4

8、z-1=0即为动点M的轨迹方程.26. 设a=(-2,7,6),b=(4, -3, -8),证明:以a与b为邻边的平行四边形的两条对角线互相垂直.证明:以a,b为邻边的平行四边形的两条对角线分别为a+b,ab,且a+b=2,4, -2a-b=-6,10,14又(a+b)(a-b)= 2(-6)+410+(-2)14=0故(a+b)(a-b).27. 已知a =3i+2j-k, b =i-j+2k,求:(1) ab; (2) 2a7b;(3) 7b2a; (4) aa.解:(1) (2) (3) (4) .28. 已知向量a和b互相垂直,且.计算:(1) |(ab)(ab)|;(2) |(3ab

9、)(a2b)|.(1)(2) 29. 求垂直于向量3i-4j-k和2i-j +k的单位向量,并求上述两向量夹角的正弦.解:与平行的单位向量30. 一平行四边形以向量a =(2,1,1)和b=(1,2,1)为邻边,求其对角线夹角的正弦.解:两对角线向量为因为,所以 .即为所求对角线间夹角的正弦.31. 已知三点A(2,-1,5), B(0,3,-2), C(-2,3,1),点M,N,P分别是AB,BC,CA的中点,证明:.证明:中点M,N,P的坐标分别为故 .32. 求同时垂直于向量a=(2,3,4)和横轴的单位向量.解:设横轴向量为b=(x,0,0)则同时垂直于a,b的向量为=4xj3xk故同

10、时垂直于a,b的单位向量为33. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积.解:设四顶点依次取为A, B, C, D.则由A,B,D三点所确定三角形的面积为同理可求其他三个三角形的面积依次为.故四面体的表面积.34. 已知三点A(2,4,1), B(3,7,5), C(4,10,9),证:此三点共线.证明:,显然则故A,B,C三点共线.35. 求过点(4,1,-2)且与平面3x-2y+6z=11平行的平面方程.解:所求平面与平面3x-2y+6z=11平行故n=3,-2,6,又过点(4,1,-2)故所求平面方程为:3(x-4)-2(y-1)+

11、6(z+2)=0即3x-2y+6z+2=0.36. 求过点M0(1,7,-3),且与连接坐标原点到点M0的线段OM0垂直的平面方程.解:所求平面的法向量可取为故平面方程为:x-1+7(y-7)-3(z +3)=0即x+7y-3z-59=037. 设平面过点(1,2,-1),而在x轴和z轴上的截距都等于在y轴上的截距的两倍,求此平面方程.解:设平面在y轴上的截距为b则平面方程可定为又(1,2,-1)在平面上,则有得b=2.故所求平面方程为38. 求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知代入三已知点,有化简得x-3y-2z=0即为所求平面方

12、程.39. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x-1=0;(3) 2x-3y-6=0; (4) x y =0;(5) 2x-3y+4z=0.解:(1) y =0表示xOz坐标面(如图7-2)(2) 3x-1=0表示垂直于x轴的平面.(如图7-3) 图7-2 图7-3 (3) 2x-3y-6=0表示平行于z轴且在x轴及y轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-640. 通过两点(1,1,1,)和(2,2,2)作垂

13、直于平面x+y-z=0的平面.解:设平面方程为Ax+By+Cz+D=0则其法向量为n=A,B,C已知平面法向量为n1=1,1,-1过已知两点的向量l=1,1,1由题知nn1=0, nl=0即所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.41. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6); (2) 与平面2x-3y+z=0成的角.解:(1) 因平面过点(5,-4,6)故有 5-4k-26=9得k=-4.(2) 两平面的法向量分别为n1=1,k,-2 n2=2,-3,1且解得42. 确定下列方程中的l和m:

14、(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行; (2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1=2,l,3, n2=m,-6,-1(2) n1=3, -5, l , n2=1,3,243. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面.解:设所求平面方程为Ax+By+Cz+D=0其法向量n=A,B,Cn1=1,-1,1, n2=2,1,1又(1,1,1)在所求平面上,故AB+C+D=0,得D=0故所求平面方程为即2x-y-3z=044. 求平行于平面3x-y+7z=5,且垂直于向量i-j+2k的

15、单位向量.解:n1=3,-1,7, n2=1,-1,2.故则45. 求通过下列两已知点的直线方程:(1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).解:(1)两点所确立的一个向量为s=3-1,1+2,-1-1=2,3,-2故直线的标准方程为: 或 (2)直线方向向量可取为s=1-3,0+1,-3-0=-2,1,-3故直线的标准方程为: 或 46. 求直线的标准式方程和参数方程.解:所给直线的方向向量为另取x0=0代入直线一般方程可解得y0=7,z0=17于是直线过点(0,7,17),因此直线的标准方程为:且直线的参数方程为:47. 求下列直线与平面的交

16、点:(1) , 2x+3y+z-1=0;(2) , x+2y-2z+6=0.解:(1)直线参数方程为代入平面方程得t=1故交点为(2,-3,6).(2) 直线参数方程为代入平面方程解得t=0.故交点为(-2,1,3).48. 求下列直线的夹角:(1)和 ;(2) 和 解:(1)两直线的方向向量分别为:s1=5, -3,33, -2,1=3,4, -1s2=2,2, -13,8,1=10, -5,10由s1s2=310+4(-5)+( -1) 10=0知s1s2从而两直线垂直,夹角为.(2) 直线的方向向量为s1=4, -12,3,直线的方程可变为,可求得其方向向量s2=0,2, -11,0,0

17、=0, -1, -2,于是49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x-y+2z-4=0垂直;(2)过点(0,2,4),且与两平面x+2z=1和y-3z=2平行;(3)过点(-1,2,1),且与直线平行.解:(1)可取直线的方向向量为s=3,-1,2故过点(2,-3,4)的直线方程为(2)所求直线平行两已知平面,且两平面的法向量n1与n2不平行,故所求直线平行于两平面的交线,于是直线方向向量故过点(0,2,4)的直线方程为(3)所求直线与已知直线平行,故其方向向量可取为s=2,-1,3故过点(-1,2,1)的直线方程为50. 试定出下列各题中直线与平面间的位

18、置关系:(1)和4x-2y-2z=3;(2)和3x-2y+7z=8;(3)和x+y+z=3.解:平行而不包含. 因为直线的方向向量为s=-2,-7,3平面的法向量n=4,-2,-2,所以于是直线与平面平行.又因为直线上的点M0(-3,-4,0)代入平面方程有.故直线不在平面上.(2) 因直线方向向量s等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为,而直线上的点(2,-2,3)在平面上.51. 求过点(1,-2,1),且垂直于直线的平面方程.解:直线的方向向量为,取平面法向量为1,2,3,故所求平面方程为即x+2y+3z=0.52. 求过点(1,-2,3)和两平面2x-3y+z=

19、3, x+3y+2z+1=0的交线的平面方程.解:设过两平面的交线的平面束方程为其中为待定常数,又因为所求平面过点(1,-2,3)故解得=-4.故所求平面方程为2x+15y+7z+7=053. 求点(-1,2,0)在平面x+2y-z+1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s=n=1,2,-1所以垂线的参数方程为将其代入平面方程可得(-1+t)+2(2+2t)-(-t)+1=0得于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点54. 求点(1,2,1)到平面x+2y+2z-10=0距离.解:过点(1,2,1)作垂直于

20、已知平面的直线,直线的方向向量为s=n=1,2,2所以垂线的参数方程为将其代入平面方程得.故垂足为,且与点(1,2,1)的距离为即为点到平面的距离.55. 求点(3,-1,2)到直线的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即故过已知点的平面方程为y+z=1.联立方程组解得即为平面与直线的垂足于是点到直线的距离为56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为设(x,y,z)为球面上任一点,则(x-1)2+(y-3)2+(z+2)2=14即x2+y2+z2-2x-6y+4z=0为所求球面方程.57. 一动点离点(2,

21、0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M(x,y,z),由题意知化简得:8x2+8y2+8z2-68x+108y-114z+779=0即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1); (2);(3); (4);(5); (6).解:(1)母线平行于z轴的抛物柱面,如图7-7.(2)母线平行于z轴的双曲柱面,如图7-8.图7-7 图7-8(3)母线平行于y轴的椭圆柱面,如图7-9.(4)母线平行于x轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z轴的两平面,如图7-11. (6)z轴,如图7-1

22、2.图7-11 图7-1259. 指出下列方程表示怎样的曲面,并作出图形:(1); (2);(3); (4);(5); (6).解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的椭圆锥面,其中心轴是y轴,如图7-17. (6) 顶点在坐标原点的圆锥面,其中心轴是z轴,如图7-18.图7-17 图7-1860. 作出下列曲面所围成的立体的图形:(1) x2+y2+z2=a2与z=0

23、,z= (a0); (2) x+y+z=4,x=0,x=1,y=0,y=2及z=0;(3) z=4-x2, x=0, y=0, z=0及2x+y=4; (4) z=6-(x2+y2),x=0, y=0, z=0及x+y=1.解:(1)(2)(3)(4)分别如图7-19,7-20,7-21,7-22所示. 图7-19 图7-20 图7-21 图7-2261. 求下列曲面和直线的交点:(1) 与;(2) 与.解:(1)直线的参数方程为代入曲面方程解得t=0,t=1.得交点坐标为(3,4,-2),(6,-2,2).(2) 直线的参数方程为代入曲面方程可解得t=1,得交点坐标为(4,-3,2).62.

24、 设有一圆,它的中心在z轴上,半径为3,且位于距离xOy平面5个单位的平面上,试建立这个圆的方程.解:设(x,y,z)为圆上任一点,依题意有即为所求圆的方程.63. 建立曲线x2+y2=z, z=x+1在xOy平面上的投影方程.解:以曲线为准线,母线平行于z轴的柱面方程为x2+y2=x+1即.故曲线在xOy平面上的投影方程为64. 求曲线x2+y2+z2=a2, x2+y2=z2在xOy面上的投影曲线.解:以曲线为准线,母线平行于z轴的柱面方程为故曲线在xOy面上的投影曲线方程为65. 试考察曲面在下列各平面上的截痕的形状,并写出其方程.(1) 平面x=2; (2) 平面y=0;(3) 平面y

25、=5; (4) 平面z=2.解:(1)截线方程为其形状为x=2平面上的双曲线.(2)截线方程为为xOz面上的一个椭圆.(3) 截线方程为为平面y=5上的一个椭圆.(4) 截线方程为为平面z=2上的两条直线.66. 求单叶双曲面与平面x-2z+3=0的交线在xOy平面,yOz平面及xOz平面上的投影曲线.解:以代入曲面方程得x2+20y2-24x-116=0.故交线在xOy平面上的投影为以x=2z-3代入曲面方程,得20y2+4z2-60z-35=0.故交线在yOz平面上的投影为交线在xOz平面上的投影为习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和

26、边界:(1) (x,y)|x0;(2) (x,y)|1x2+y24;(3) (x,y)|yx2;(4) (x,y)|(x-1)2+y21(x,y)|(x+1)2+y21.解:(1)开集、无界集,聚点集:R2,边界:(x,y)|x=0.(2)既非开集又非闭集,有界集,聚点集:(x,y)|1x2+y24,边界:(x,y)|x2+y2=1(x,y)| x2+y2=4.(3)开集、区域、无界集,聚点集:(x,y)|yx2,边界:(x,y)| y=x2.(4)闭集、有界集,聚点集即是其本身,边界:(x,y)|(x-1)2+y2=1(x,y)|(x+1)2+y2=1.2. 已知f(x,y)=x2+y2-x

27、ytan,试求.解:3. 已知,试求解:f(x+y, x-y, xy) =(x+y)xy+(xy)x+y+x-y =(x+y)xy+(xy)2x.4. 求下列各函数的定义域:解:5. 求下列各极限:解:(1)原式=(2)原式=+.(3)原式=(4)原式=(5)原式=(6)原式=6. 判断下列函数在原点O(0,0)处是否连续:(3) 解:(1)由于又,且,故.故函数在O(0,0)处连续.(2)故O(0,0)是z的间断点.(3)若P(x,y) 沿直线y=x趋于(0,0)点,则若点P(x,y) 沿直线y=-x趋于(0,0)点,则故不存在.故函数z在O(0,0)处不连续.7. 指出下列函数在向外间断:

28、(1) f(x,y)=;(2) f(x,y)=;(3) f(x,y)=ln(1x2y2);(4)f(x,y)=解:(1)因为当y=-x时,函数无定义,所以函数在直线y=-x上的所有点处间断,而在其余点处均连续.(2)因为当y2=2x时,函数无定义,所以函数在抛物线y2=2x上的所有点处间断.而在其余各点处均连续.(3)因为当x2+y2=1时,函数无定义,所以函数在圆周x2+y2=1上所有点处间断.而在其余各点处均连续.(4)因为点P(x,y)沿直线y=x趋于O(0,0)时.故(0,0)是函数的间断点,而在其余各点处均连续.8. 求下列函数的偏导数:(1)z=x2y+;(2)s=;(3)z=xl

29、n;(4)z=lntan;(5)z=(1+xy)y;(6)u=zxy;(7)u=arctan(x-y)z;(8).解:(1)(2) (3)(4)(5)两边取对数得故 (6)(7)(8)9.已知,求证:.证明: .由对称性知 .于是 .10.设,求证:.证明: ,由z关于x,y的对称性得故 11.设f(x,y)=x+(y-1)arcsin,求fx(x,1) .解:则.12.求曲线在点(2,4,5)处的切线与正向x轴所成的倾角.解:设切线与正向x轴的倾角为,则tan=1. 故=.13.求下列函数的二阶偏导数:(1)z=x4+ y4-4x2y2;(2)z=arctan;(3)z=yx;(4)z=.解

30、:(1)由x,y的对称性知(2),(3)(4)14.设f(x,y,z)=xy2+yz2+zx2,求解:15.设z=xln(xy),求及.解:16.求下列函数的全微分:(1);(2);(3);(4).解:(1)(2)(3)(4)17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分:(1)(2)解:(1)(2)18.利用全微分代替全增量,近似计算:(1) (1.02)3(0.97)2;(2);(3)(1.97)1.05.解:(1)设f(x,y)=x3y2,则故df(x,y)=3x2y2dx+2x3ydy=xy(3xydx+2x2dy)取x=1,y=1,dx=0.02,dy=-0.03,则

31、(1.02)3(0.97)2=f(1.02,0.97)f(1,1)+df(1,1)=1312+113110.02+212(-0.03)=1.(2)设f(x,y)=,则故取,则(3)设f(x,y)=xy,则df(x,y)=yxy-1dx+xylnxdy,取x=2,y=1,dx=-0.03,dy=0.05,则19.矩型一边长a=10cm,另一边长b=24cm,当a边增加4mm,而b边缩小1mm时,求对角线长的变化.解:设矩形对角线长为l,则当x=10,y=24,dx=0.4,dy=-0.1时,(cm)故矩形的对角线长约增加0.062cm.20. 1mol理想气体在温度0和1个大气压的标准状态下,体

32、积是22.4L,从这标准状态下将温度升高3,压强升高0.015个大气压,问体积大约改变多少?解:由PV=RT得V=,且在标准状态下,R=8.2056810-2,Vdv=-=故体积改变量大约为0.09.21. 测得一物体的体积V=4.45cm3,其绝对误差限是0.01cm3,质量m=30.80g,其绝对误差限是0.01g,求由公式算出密度的绝对误差与相对误差.解:当V=4.45,m=30.80,dv=0.01,dm=0.01时,当v=4.45, m=30.80时22. 求下列复合函数的偏导数或全导数:(1)求,;(2) z,xuv,yuv,求,;(3) ,yx3,求;(4) ux2y2z2, x

33、,y,z,求.解:(1)(2)(3)(4)23. 设f具有一阶连续偏导数,试求下列函数的一阶偏导数:(1)(2)(3)解:(1)(2)(3)24.设为可导函数,证明:证明:故25. 设,其中f(u)为可导函数,验证:证明: ,26. ,其中f具有二阶导数,求解:由对称性知,27. 设f是c2类函数,求下列函数的二阶偏导数:(1)(2)(3)解:(1)(2)(3)28. 试证:利用变量替换,可将方程化简为 .证明:设故29. 求下列隐函数的导数或偏导数:(1),求;(2),求;(3),求;(4),求.解:(1)解法1 用隐函数求导公式,设F(x,y)=siny+ex-xy2,则 故 .解法2 方

34、程两边对x求导,得故 (2)设(3)方程两边求全微分,得则 故 (4)设,则 30. 设F(x,y,z)=0可以确定函数x=x(y,z),y=y(x,z),z=z(x,y),证明:.证明:31. 设确定了函数z=z(x,y),其中F可微,求.解:32. 求由下列方程组所确定的函数的导数或偏导数:(1)求:(2) 求:(3) 其中f,g是类函数,求(4) 求解:(1)原方程组变为方程两边对x求导,得当 (2)设故 (3)设则 故 (4)是已知函数的反函数,方程组两边对x求导,得整理得 解得 方程组两边对y求导得整理得 解得 33. 设,试求解:由方程组可确定反函数,方程组两边对x求导,得解得 所以 方程组两边对y求导,得解得 所以 .34. 求函数在(2,-1)点的泰勒公式.解:故35. 将函数在(1,1)点展到泰勒公式的二次项.解:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁