《高中数学概率与统计问题的题型与方法(20页).doc》由会员分享,可在线阅读,更多相关《高中数学概率与统计问题的题型与方法(20页).doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-高中数学概率与统计问题的题型与方法-第 20 页第7讲 概率与统计问题的题型与方法(4课时)一、考试内容离散型随机变量的分布列,离散型随机变量的期望值和平方差,抽样方法,总体分布的估计,正态分布,总体特征数的估计,线性回归。二、考试要求了解随机变量、离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。 了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 会用抽机抽样,系统抽样,分层抽样等常用的抽样方法从总体中抽取样本。 会用样本频率分布去估计总体分布。 了解正态分布的意义及主要性质。 了解假设检验的基本思想。 会根据样本的特征数估计总体。 了解线
2、性回归的方法。三、复习目标1 了解典型分布列:01分布,二项分布,几何分布。2 了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。3 在实际中经常用期望来比较两个类似事件的水平,当水平相近时,再用方差比较两个类似事件的稳定程度。4 了解正态分布的意义,能借助正态曲线的图像理解正态曲线的性质。5 了解标准正态分布的意义和性质,掌握正态总体转化为标准正态总体N(0,1)的公式及其应用。6 通过生产过程的质量控制图,了解假设检验的基本思想。7 了解相关关系、回归分析、散点图等概念,会求回归直线方程。8 了解相关系数的计算公式及其意义,会用相关系数公式进行计算。9
3、了解相关性检验的方法与步骤,会用相关性检验方法进行检验。四、双基透视随机事件和统计的知识结构:随机事件和统计的内容提要1主要内容是离散型随机变量的分布列、期望与方差,抽样方法,总体分布的估计,正态分布和线性回归。2随机变量的概率分布(1)离散型随机变量的分布列:P两条基本性质);P1+P2+=1。(2)连续型随机变量概率分布:由频率分布直方图,估计总体分布密度曲线y=f(x);总体分布密度函数的两条基本性质:f(x) 0(xR);由曲线y=f(x)与x轴围成面积为1。3随机变量的数学期望和方差(1)离散型随机变量的数学期望:;反映随机变量取值的平均水平。(2)离散型随机变量的方差:;反映随机变
4、量取值的稳定与波动,集中与离散的程度。(3)基本性质:;。4三种抽样方法。5二项分布和正态分布(1)记是n次独立重复试验某事件发生的次数,则B(n,p);其概率。期望E=np,方差D=npq。(2)正态分布密度函数:期望E=,方差。(3)标准正态分布:若,则,6线性回归:当变量x取值一定时,如果相应的变量y的取值带有一定的随机性,那么就说变量y与x具有相关关系。对于它们的一组观测值来说,如果与之相应的在平面直角坐标系中的点大体上集中在一条直线的附近,就说变量y与x之间具有线性相关关系。相关系数用来检验线性相关显著水平,通常通过查表取显著水平0.05自由度n-2的,若为显著;否则为不显著。离散型
5、随机变量的分布列随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。随机变量最常见的两种类型,即离散型随机变量和连续型随机变量。如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量;如果随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量。离散型随机变量的分布列:如果离散型随机变量的可能取值为xi(i1,2,),由于试验的各个结果的出现有一定的概率,于是随机变量取每一个值也有一定的概率P(xi)pi,人们常常习惯地把它们写成表格的形式,如:x1x2xiPp1p2pi这种表即为随机变量的概率分布,简称为的分布列。分布列的表达
6、式可有如下几种:(1)表格形式;(2)一组等式;(3)压缩为一个带“i”的等式。1在实际问题中,人们常关心随机变量的特征,而不是随机变量的具体值。离散型随机变量的期望和方差都是随机变量的特征数,期望反映了随机变量的平均取值,方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度。其中标准差与随机变量本身有相同的单位。2离散型随机变量期望和方差的计算公式设离散型随机变量的分布列为P(xi)pi,i1,2,则:Ei pi,DiE)2 pii2 pi(E)2E(2)(E)2。3离散型随机变量期望和方差的性质E (ab)aEb,D (ab)a2 D。4二项分布的期望与方差若B (n,p),则E
7、np,Dnp (1p)。抽样方法三种常用抽样方法:1简单随机抽样:设一个总体的个数为N。如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。实现简单随机抽样,常用抽签法和随机数表法。2系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)。系统抽样的步骤可概括为:(1)将总体中的个体编号;(2)将整个的编号进行分段;(3)确定起始的个体编号;(4)抽取样本。3分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按
8、照各部分所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫做层。总体分布的估计总体分布:总体取值的概率分布规律通常称为总体分布。总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线。正态分布正态分布:如果总体密度曲线是以下函数的图象:式中的实数、(0)是参数,分别表示总体的平均数与标准差,这个总体是有无限容量的抽象总体。其分布叫做正态分布,常记作N(,2)。的图象被称为正态曲线。特别地,在函数中,当=0,=1时,正态总体称为标准正态总体,这时,相应的函数表达式是, 相应的曲线称为标准正态曲线。当我们不知道一个总体的分布时,
9、往往总是从总体中抽取一个样本,并用样本的频率分布去估计总体的分布,而且随着样本容量越大分组的组距越小,样本的频率分布就更加接近总体分布。当样本容量无限增大且分组的组距无限缩小时,频率分布直方图就会演变成一条光滑曲线,即反映总体分布的总体密度曲线。可以知道,反映总体分布的总体密度曲线的形状是形形色色的,不同形状的总体密度曲线是不同总体分布的反映,而正态分布以及反映这种分布的正态曲线是异彩纷呈的总体分布及总体密度曲线中的一类重要分布。1正态分布的重要性正态分布是概率统计中最重要的一种分布,其重要性我们可以从以下两方面来理解:一方面,正态分布是自然界最常见的一种分布。一般说来,若影响某一数量指标的随
10、机因素很多,而每个因素所起的作用都不太大,则这个指标服从正态分布。例如,产品尺寸是一类典型的总体,对于成批生产的产品,如果生产条件正常并稳定,即工艺、设备、技术、操作、原料、环境等可以控制的条件都相对稳定,而且不存在产生系统误差的明显因素,那么,产品尺寸的总体分布就服从正态分布。又如测量的误差;炮弹落点的分布;人的生理特征的量:身高、体重等;农作物的收获量等等,都服从或近似服从正态分布。另一方面,正态分布具有许多良好的性质,很多分布可以用正态分布来近似描述,另外,一些分布又可以通过正态分布来导出,因此在理论研究中正态分布也十分重要。2正态曲线及其性质对于正态分布函数:,x(-,+)由于中学知识
11、范围的限制,不必去深究它的来龙去脉,但对其函数图像即正态曲线可通过描点(或计算机中的绘图工具)画出课本图1-4中的图(1)、(2)、(3),由此,我们不难自己总结出正态曲线的性质。3标准正态曲线标准正态曲线N(0,1)是一种特殊的正态分布曲线,它是本小节的重点。由于它具有非常重要的地位,已专门制作了“标准正态分布表”。对于抽像函数,课本中没有给出具体的表达式,但其几何意义非常明显,即由正态曲线N(0,1)、x轴、直线所围成的图形的面积。再由N(0,1)的曲线关于y轴对称,可以得出等式,以及标准正态总体在任一区间(a,b)内取值概率。4一般正态分布与标准正态分布的转化由于一般的正态总体其图像不一
12、定关于y轴对称,所以,研究其在某个区间的概率时,无法利用标准正态分布表进行计算。这时我们自然会思考:能否将一般的正态总体转化成标准的正态总体N(0,1)进行研究。人们经过探究发现:对于任一正态总体,其取值小于x的概率。对于这个公式,课本中不加证明地给出,只用了“事实上,可以证明”这几个字说明。这表明,对等式的来由不作要求,只要会用它求正态总体在某个特定区间的概率即可。5“小概率事件”和假设检验的基本思想“小概率事件”通常指发生的概率小于5%的事件,因为对于这类事件来说,在大量重复试验中,平均每试验20次,才能发生1次,所以认为在一次试验中该事件是几乎不可能发生的。这种认识便是进行推断的出发点。
13、关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能。就是说,这里在概率的意义上所作的推理与过去确定性数学中的“若a则b”式的推理有所不同。课本是借助于服从正态分布的有关零件尺寸的例子来介绍假设检验的基本思想。进行假设检验一般分三步:第一步,提出统计假设。课本例子里的统计假设是这个工人制造的零件尺寸服从正态分布。第二步,确定一次试验中的取值a是否落入范围(-3,+3)。 第三步,作出推断。如果a(-3,+3),接受统计假设;如
14、果,由于这是小概率事件,就拒绝统计假设。上面这种拒绝统计假设的推理,与我们过去学习过的反证法有类似之处。事实上,用反证法证明一个问题时,先否定待证命题的结论,这本身看成一个新的命题,从它出发进行推理,如果出现了矛盾,就把这个矛盾归因于前述新命题不正确,从而将它否定。否定了新命题,也就等于证明了原命题的结论。线性回归回归分析:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系或回归关系。回归直线方程:设x与y是具有相关关系的两个变量,且相应于n个观测值的n个点大致分布在某一条直线的附近,就可以认为y对x的回归函数的类型为直线型:。其中,。我们称这个方程为y
15、对x的回归直线方程。 1相关关系研究两个变量间的相关关系是学习本节的目的。对于相关关系我们可以从下三个方面加以认识:(1)相关关系与函数关系不同。函数关系中的两个变量间是一种确定性关系。例如正方形面积S与边长x之间的关系就是函数关系。即对于边长x的每一个确定的值,都有面积S的惟一确定的值与之对应。相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系。例如人的身高与年龄;商品的销售额与广告费等等都是相关关系。(2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。例如有人发现,对于在校儿童,身高与阅读技能有很强的相关关系。然而学会新词并不能使儿童马上长高,而
16、是涉及到第三个因素年龄,当儿童长大一些,他们的阅读能力会提高而且由于长大身高也会高些。(3)函数关系与相关关系之间有着密切联系,在一定的条件下可以相互转化。例如正方形面积S与其边长x间虽然是一种确定性关系,但在每次测量边长时,由于测量误差等原因,其数值大小又表现出一种随机性。而对于具有线性关系的两个变量来说,当求得其回归直线后,我们又可以用一种确定性的关系对这两个变量间的关系进行估计。相关关系在现实生活中大量存在,从某种意义上讲,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况。因此研究相关关系,不仅可使我们处理更为广泛的数学应用问题,还可使我们对函数关系的认识上升到一个新的高度。
17、2回归分析本节所研究的回归分析是回归分析中最简单,也是最基本的一种类型一元线性回归分析。对于线性回归分析,我们要注意以下几个方面:(1)回归分析是对具有相关关系的两个变量进行统计分析的方法。两个变量具有相关关系是回归分析的前提。(2)散点图是定义在具有相关系的两个变量基础上的,对于性质不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行相关回归分析。(3)求回归直线方程,首先应注意到,只有在散点图大至呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义。3相关系数有时散点图中的各点并不集中在一条直线的附近,仍可以按照求回归直线方程的步骤求得回归
18、直线方程。显然这种情形下求得的回归直线方程没有实际意义。那么,在什么情况下求得的回归直线方程才能对相应的一组观测数据具有代表意义?课本中不加证明地给出了相关系数的公式。相关系数公式的作用在于,我们对一组数据之间的线性相关程度可作出定量的分析,而不是仅凭画出散点图,直觉地从散点图的形状粗浅地得出数据之间的线性相关程度。4线性相关性检验相关性检验是一种假设检验,它给出了一个具体检验y与x之间线性相关与否的具体办法。限于要求,中学阶段只要求掌握这种检验方法的操作步骤,而不要求对这种方法包含的原理进行深入研究。其具体检验的步骤如下:(1)在课本中的附表3中查出与显著性水平0.05与自由度n-2(n为观
19、测值组数)相应的相关系数临界值。(2)根据公式计算r的值。(3)检验所得结果。如果,那么可以认为y与x之间的线性相关关系不显著,从而接受统计假设。如果,表明一个发生的概率不到5%的事件在一次试验中竟发生了。这个小概率事件的发生使我们有理由认为y与x之间不具有线性相关关系的假设是不成立的,拒绝这一统计假设也就是表明可以认为y与x之间具有线性相关关系。有了相关性检验方法后,我们对一组数据作线性回归分析,只须先对这组数据的线性相关性进行检验。如若具有线性相关性,则可依据求回归直线方程的方法进行求解,而不必像前面那样,先画散点图,再依照散点图呈直线性后再求回归直线方程。这样就使得回归直线方程更能真实地
20、反映实际情况,具有应用于实际的价值。五、注意事项1由概率的性质可知,任一离散型随机变量的分布列具有下述两个性质:(1)pi0,i1,2,;(2)p1p21。2若随机变量的分布列为:P (k)Cnk pk qn-k。(k0,1,2,n,0p1,q1p,则称服从二项分布,记作B (n,p),其中n、 p为参数,并记Cnk pk qn-k=b(k;n,p)。对二项分布来说,概率分布的两个性质成立。即:(1)P (k)Cnk pk qn-k0,k0,1,2,n;(2)P (k)Cnk pk qn-k(pq) n1。二项分布是一种常见的离散型随机变量的分布,它有着广泛的应用。1三种抽样方法的共同点都是等
21、概率抽样,即抽样过程中每个个体被抽取的概率相等,体现了这三种抽样方法的客观性和公平性。若样本容量为n,总体的个体数为N,则用这三种方法抽样时,每一个个体被抽到的概率都是。2三种抽样方法的各自特点、适用范围、相互联系及共同点如下表:类 别共 同 点各 自 特 点相 互 联 系适 用 范 围简单随机抽样抽样过程中每个个体被抽取的概率相等从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几个部分,然后按照事先确定的规则在各部分抽取在起始部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样总体由差异明显的几部分组成总体密度曲线反映了总体分布,即
22、反映了总体在各个范围内取值的概率。总体在区间(a,b)内取值的概率等于该区间上总体密度曲线与x轴、直线x=a、x=b所围成曲边梯形的面积。1正态分布由参数、唯一确定,如果随机变量N(,2),根据定义有:=E,=D。2正态曲线具有以下性质:(1)曲线在x轴的上方,与x轴不相交。(2)曲线关于直线x =对称。(3)曲线在x =时位于最高点。(4)当x 时,曲线下降。并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近。(5)当一定时,曲线的形状由确定。越大,曲线越“矮胖”,表示总体越分散;越小,曲线越“瘦高”,表示总体的分布越集中。在“标准正态分布表”中相应于x0的值(x0)是指总体取值
23、小于的概率,则:(1)(x0)=P(x 0.02 。例4. 2003年全国高考江苏卷(14) 辽宁卷(14) 天津文科卷(14) 天津理科卷(14)某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆。为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取 6 ,z 30 , 10 辆。 提示:1200 + 6000 + 2000 = 9200;46 : 9200 = 1 : 20; 1200 = 6,6000 = 30,2000 = 10。例5. 抽样本检查是产品检查的常用方法.分为返回抽样和不返回抽样两种具体操作方案.现有100只外型相同
24、的电路板,其中有40只A类版后60只B类板.问在下列两种情况中“从100只抽出3只,3只都是B类”的概率是多少? 每次取出一只,测试后放回,然后再随机抽取下一只(称为返回抽样); 每次取出一只,测试后不放回,在其余的电路板中,随意取下一只(称为不返回抽样)解: 设“从100只中抽去3只,3只都是B类”为事件M,先求基本事件总数,由于每次抽去一只,测试后又放回,故每次都是从100只电路板中任取一只,这是重复排列,共有个.再求M所包含的基本事件数,由于每次抽出后又放回,故是重复排列,共有 个,所以 由于取出后不放回,所以总的基本事件数为个,事件M的基本事件数为,所以 例6. 已知连续型随机变量的概
25、率密度函数,且f(x) 0,求常数k的值,并计算概率P(1.52.5)。 分析:凡是计算连续型随机变量的密度函数f(x)中的参数、概率P(ab)都需要通过求面积来转化而求得。若f(x) 0且在a,b上为线性,那么P(ab)的值等于以b-a为高,f(a)与f(b)为上、下底的直角梯形的面积,即。解: 例7. 对划艇运动员甲、乙二人在相同的条件下进行了6次测试,测得他们最大速度的数据如下:甲:27,38,30,37,35,31;乙:33,29,38,34,28,36。根据以上数据,试判断他们谁更优秀。分析:根据统计知识可知,需要计算两组数据的与,然后加以比较,最后再作出判断。解: ,由此可以说明,
26、甲、乙二人的最大速度的平均值相同,但乙比甲更稳定,故乙比甲更优秀。说明:与作为总体方差的两个估计量,当样品容量不是很大时,更接近,故在实际运用时,我们常用去估计,但当容量较大时,与则没有什么差别。例8几何分布某射击手击中目标的概率为P。求从射击开始到击中目标所需次数的期望、方差。解:123令 例9设,且总体密度曲线的函数表达式为:,xR。(1)求,;(2)求及的值。分析:根据表示正态曲线函数的结构特征,对照已知函数求出和。利用一般正态总体与标准正态总体N(0,1)概率间的关系,将一般正态总体划归为标准正态总体来解决。解: (1)由于,根据一般正态分布的函数表达形式,可知=1,故XN(1,2)。
27、(2)又说明:在解决数学问题的过程中,将未知的,不熟悉的问题转化为已知的、熟悉的、已解决了的问题,是我们常用的手段与思考问题的出发点。通过本例我们还可以看出一般正态分布与标准正态分布间的内在关联。例10公共汽车门的高度是按照确保99%以上的成年男子头部不跟车门顶部碰撞设计的,如果某地成年男子的身高N(173,7)(单位:cm),问车门应设计多高(精确到1cm)?分析:由题意可知,求的是车门的最低高度,可设其为xcm,使其总体在不低于x的概率小于1%。解:设该地区公共汽车车门的最低高度应设为xcm,由题意,需使P(x)179.16,即公共汽车门的高度至少应设计为180cm,可确保99%以上的成年
28、男子头部不跟车门顶部碰撞。说明:解决本题的关键是在正确理解题意的基础上,找出正确的数学表达式;而逆向思维和逆向查表,体现解决问题时思维的灵活性。例11已知某地每单位面积菜地年平均使用氮肥量xkg与每单位面积蔬菜年平均产量yt之间的关系有如下数据:年份19851986198719881989199019911992x(kg)7074807885929095y(t)5.16.06.87.89.010.210.012.0年份1993199419951996199719981999x(kg)92108115123130138145y(t)11.511.011.812.212.512.813.0(1)求
29、x与y之间的相关系数,并检验是否线性相关;(2)若线性相关,求蔬菜产量y与使用氮肥量之间的回归直线方程,并估计每单位面积施肥150kg时,每单位面积蔬菜的年平均产量。分析:(1)使用样本相关系数计算公式来完成;(2)查表得出显著性水平0.05与自由度15-2相应的相关系数临界比较,若则线性相关,否则不线性相关。解:(1)列出下表,并用科学计算器进行有关计算:i1234567891011121314157074807885929095921081151231301381455.16.06.87.89.010.210.012.011.511.011.812.212.512.813.03574445
30、44608.4765938.490011401058118813571500.616251766.41885,。故蔬菜产量与放用氮肥量的相关系数由于n=15,故自由度15-2=13。由相关系数检验的临界值表查出与显著水平0.05及自由度13相关系数临界值,则,从而说明蔬菜产量与氮肥量之间存在着线性相关关系。(2)设所求的回归直线方程为,则,回归直线方程为。说明:求解两个变量的相关系数及它们的回归直线方程的计算量较大,需要细心、谨慎地计算。如果会使用含统计的科学计算器,能简单得到,这些量,也就无需有制表这一步,直接算出结果就行了。另外,利用计算机中有关应用程序也可以对这些数据进行处理。例12.设
31、随机变量服从N(0,1),求下列各式的值:(1)P(2.55); (2)P(-1.44); (3)P(|1.52)。分析:一个随机变量若服从标准正态分布,可以借助于标准正态分布表,查出其值。但在标准正态分布表中只给出了,即的情形,对于其它情形一般用公式:(-x)=1-(x);p(axb)= (b)- (a)及等来转化。解:(1)(2)(3)说明:从本题可知,在标准正态分布表中只要给出了的概率,就可以利用上述三个公式求出其它情形下的概率。例13某厂生产的圆柱形零件的外径N(4,0.25)。质检人员从该厂生产的1000件零件中随机抽查一件,测得它的外径为5.7cm。试问该厂生产的这批零件是否合格?
32、分析:欲判定这批零件是否合格,由假设检验基本思想可知,关键是看随机抽查的一件产品的尺寸是在(-3,+3)内,还是在(-3,+3)之外。解:由于圆柱形零件的外径N(4,0.25),由正态分布的特征可知,正态分布N(4,0.25)在区间(4-30.5,4+30.5)即(2.5,5.5)之外取值的概率只有0.003,而,这说明在一次试验中,出现了几乎不可能发生的小概率事件,根据统计中假设检验的基本思想,认为该厂这批产品是不合格的。说明:判断某批产品是否合格,主要运用统计中假设检验的基本思想。例14假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:x23456y2.23.85.
33、56.57.0若由资料可知y对x呈线性相关关系。试求:(1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少?分析:本题为了降低难度,告诉了y与x间呈线性相关关系,目的是训练公式的使用。解:(1)列表如下:i12345234562.23.85.56.57.04.411.422.032.542.049162536,于是,线性回归方程为:。(2)当x=10时,(万元)即估计使用10年时维修费用是12.38万元。说明:本题若没有告诉我们y与x间是呈线性相关的,应首先进行相关性检验。如果本身两个变量不具备线性相关关系,或者说它们之间相关关系不显著时,即使求出回归方程也是没有意义的,而且其估计
34、与预测也是不可信的。例15. (2003年全国高考辽宁卷(20) 天津理科卷(20))A、B两个代表队进行乒乓球对抗赛,每队三名队员,A队队员是A1、A2、A3,B队队员是B1、B2、B3 。按以往多次比赛的统计,对阵队员之间胜负概率如下:对阵队员A队队员胜的概率A队队员负的概率A1对B1A2对B2A3对B3现按表中对阵方式出场, 每场胜队得1分, 负队得0分。设A队、B队最后总分分别为 x、h。 () 求 x、h 的概率分布;() 求Ex、Eh。分析:本题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力。解:() x、h 的可能取值分别为3, 2, 1, 0. P
35、(x = 3) = (即A队连胜3场) P(x = 2) = (即A队共胜2场) P(x = 1) = (即A队恰胜1场) P(x = 0) = (即A队连负3场)根据题意知 x + h = 3,所以 P(h = 0) = P(x = 3) = ,P(h = 1) = P(x = 2) = , P(h = 2) = P(x = 1) = ,P(h = 3) = P(x = 0) = 。() Ex = ; 因为x + h = 3, 所以Eh = 3 Ex =。七、强化训练和参考答案1.随机变量的的分布列如下,则m= (D)1234pm(A) (B) (C) (D)2.设随机变量服从二项分布B(6
36、,),则P(=3)= (A)(A) (B) (C) (D)3.从签盒中有编号为1、2、3、4、5、6的六支签中,任意取3支,设为这3支签的号码之中最大的一个。则的的数学期望为 (B)(A)5(B)5.25(C)5.8(D)4.64.某射手射击时击中目标的概率为0.7,设4次射击击中目标的次数为随机变量,则P(1)等于 (D)(A)0.9163(B)0.0081(C)0.0756(D)0.99195.在简单随机抽样中,某一个个体被抽到的可能性是 (C)(A) 与第几次抽样有关,第一次抽的可能性最大。(B) 与第几次抽样有关,第一次抽的可能性最小。(C) 与第几次抽样无关,每次抽到的可能性相等。(
37、D) 与第几次抽样无关,与抽取几个样本有关。6.一个年级有12个班,每个班有50名学生,随机编为150号,为了了解他们在课外的兴趣爱好要求每班是40号学生留下来进行问卷调查,这里运用的抽样方法是(D)(A)分层抽样 (B)抽签法 (C)随机数表法 (D)系统抽样法7.当一个样本的容量不大时,我们估计总体的标准差的常用量是:(C)(A)s (B)s2 (C)s* (D)s*28.从总体中抽一个样本,2、3、4、8、7、6,则样本平均数为= (B)(A)4 (B)5 (C)6 (D)6.59.从总体中抽一个样本,3、7、4、6、5,则样本方差s*2为 (B)(A)2 (B)2.5 (C)5 (D)
38、310.下面哪有个数不为总体特征数的是 (D)(A) 总体平均数(B)总体方差(C)总体标准差(D)总体样本11.为了抽查某城市汽车尾气排放执行标准情况,在该城市的主干道上采取抽取车牌末位数字为5 的汽车检查,这种抽样方法称为 (C)(A)简单随机抽样 (B)随机数表法(C)系统抽样法 (D)分层抽样法12.已知n个数据为x1,x2,xn,那么是指 (D)(A)s (B)s* (C)s2 (D)s*213.总体方差2的的估计量为 (B)(A) (B)s2 (C)s (D)s*14.已知容量为40的样本方差s2=3.9,那么s*= (B)(A)4 (B)2 (C) (D)115.设15000件产
39、品中有1000件废品,从中抽取150件进行检查,查得废品的数学期望为 (B)(A)20 (B)10 (C)5 (D)1516.某一计算机网络,有几个终端,每个终端在一天中使用的概率p,则这个网络中一天平均使用的终端个数为 (B)(A)np(1-p) (B)np (C)n (D)p(1- p)17.下列说法正确的是: (D)(A) 甲乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样(B) 期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班好(C) 期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习情况甲班比乙班好(D) 期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习情况甲班比乙班好18. 某射击运动员射击所得环数