《高中数学文科导数练习题(6页).doc》由会员分享,可在线阅读,更多相关《高中数学文科导数练习题(6页).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-高中数学文科导数练习题-第 6 页数学导数练习(文)一、1. 一个物体的运动方程为S=1+t+t2其中的单位是米,的单位是秒,那么物体在秒末的瞬时速度是( )A 米/秒 B 米/秒 C 米/秒 D 米/秒2. 已知函数f(x)=ax2c,且=2,则a的值为( ) A.1B. C.1D. 03 与是定义在R上的两个可导函数,若,满足,则与满足( )A 2 B为常数函数 C D 为常数函数4. 函数的递增区间是( )A B C D 5.若函数f(x)在区间(a ,b)内函数的导数为正,且f(b)0,则函数f(x)在(a, b)内有( )A. f(x) 0 B.f(x) 0 C.f(x) = 0
2、D.无法确定6.=0是可导函数y=f(x)在点x=x0处有极值的 ( )A充分不必要条件 B必要不充分条件 C充要条件 D非充分非必要条件7曲线在处的切线平行于直线,则点的坐标为( )A B C 和 D 和8函数 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C.极小值-1,极大值3 D. 极小值-2,极大值29 对于上可导的任意函数,若满足,则必有( )A B C D 10函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点( ) A. 个 B.个 C.个 D.个二、11函数的单调区间为_.12已知函数在R上有两个极值点,则实数的取值范围是 . 在点
3、 处的切线倾斜角为_.14. 曲线在点处的切线与轴、直线所围成的三角形的面积为_。15. 已知曲线,在点的切线方程是_16. 某公司一年购买某种货物400吨,每次都购买吨,运费为4万元次,一年的总存储费用为万元,要使一年的总运费与总存储费用之和最小,则吨三、解答题: 15求垂直于直线并且与曲线相切的直线方程16如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?17已知的图象经过点,且在处的切线方程是,请解答下列问题:(1)求的解析式;(2)求的单调递增区间。18已知函数(1)当时,求函数极小值;(2)试讨论
4、曲线与轴公共点的个数。19.已知函数在与时都取得极值(1)求的值与函数的单调区间(2)若对,不等式恒成立,求的取值范围 20.已知是函数的一个极值点,其中,(1)求与的关系式; (2)求的单调区间;(3)当时,函数的图象上任意一点的切线斜率恒大于3m,求m的取值范围.参考答案一、选择题AACACBBCCCA二、填空题11递增区间为:(-,),(1,+)递减区间为(,1)(注:递增区间不能写成:(-,)(1,+)12 13 14 15.三、解答题:17解:设切点为,函数的导数为切线的斜率,得,代入到得,即, 18解:设小正方形的边长为厘米,则盒子底面长为,宽为 ,(舍去) ,在定义域内仅有一个极
5、大值,19解:(1)的图象经过点,则,切点为,则的图象经过点得(2)单调递增区间为20解:(1)极小值为(2)若,则,的图像与轴只有一个交点;若, 极大值为,的极小值为,的图像与轴有三个交点;若,的图像与轴只有一个交点;若,则,的图像与轴只有一个交点;若,由(1)知的极大值为,的图像与轴只有一个交点;综上知,若的图像与轴只有一个交点;若,的图像与轴有三个交点。21解:(1)由,得,函数的单调区间如下表: 极大值极小值所以函数的递增区间是与,递减区间是;(2),当时,为极大值,而,则为最大值,要使恒成立,则只需要,得 22解(1)因为是函数的一个极值点,所以,即,所以(2)由(1)知,=当时,有,当变化时,与的变化如下表:100调调递减极小值单调递增极大值单调递减故有上表知,当时,在单调递减,在单调递增,在上单调递减.(3)由已知得,即又所以即设,其函数开口向上,由题意知式恒成立,所以解之得又所以即的取值范围为