《高考数学专题:空间向量与立体几何(含解析)(11页).doc》由会员分享,可在线阅读,更多相关《高考数学专题:空间向量与立体几何(含解析)(11页).doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-高考数学专题:空间向量与立体几何(含解析)-第 11 页立体几何中的向量方法1.(2012年高考(重庆理)设四面体的六条棱的长分别为1,1,1,1,和,且长为的棱与长为的棱异面,则的取值范围是()ABCD解析 以O为原点,分别以OB、OC、OA所在直线为x、y、z轴, 则,A 2. (2012年高考(陕西理)如图,在空间直角坐标系中有直三棱柱,则直线与直线夹角的余弦值为()ABCD解析:不妨设,直线与直线夹角为锐角,所以余弦值为,选A. 3.(2012年高考(天津理)如图,在四棱锥中,丄平面,丄,丄,.()证明丄;()求二面角的正弦值;()设E为棱上的点,满足异面直线BE与CD所成的角为,求
2、AE的长.【命题意图】本小题主要考查空间两条直线的位置关系,二面角、异面直线所成的角,直线与平面垂直等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力. 方法一:(1)以为正半轴方向,建立空间直角左边系则(2),设平面的法向量则 取是平面的法向量得:二面角的正弦值为(3)设;则, 即方法二:(1)证明,由平面,可得,又由,故平面,又平面,所以. (2)解:如图,作于点,连接,由,可得平面.因此,从而为二面角的平面角. 在中,由此得,由(1)知,故在中,因此,所以二面角的正弦值为. 4.(2012年高考(新课标理)如图,直三棱柱中,是棱的中点,(1)证明:
3、(2)求二面角的大小.第一问省略第二问:如图建系: A(0,0,0),P(0,0,),M(,0), N(,0, 0),C(,3,0). 设Q(x,y,z),则. 由,得:. 即:. 对于平面AMN:设其法向量为. 则. . 同理对于平面AMN得其法向量为. 记所求二面角AMNQ的平面角大小为, 则. 所求二面角AMNQ的平面角的余弦值为. 5.(2011年安徽)如图,为多面体,平面与平面垂直,点在线段上,OAB,,,都是正三角形。()证明直线;(II)求棱锥FOBED的体积。本题考查空间直线与直线,直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算等基本知识,考查空间想象能
4、力,推理论证能力和运算求解能力.(I)(综合法)证明:设G是线段DA与EB延长线的交点. 由于OAB与ODE都是正三角形,所以=,OG=OD=2,又由于G和都在线段DA的延长线上,所以G与重合.=在GED和GFD中,由=和OC,可知B和C分别是GE和GF的中点,所以BC是GEF的中位线,故BCEF.(向量法)过点F作,交AD于点Q,连QE,由平面ABED平面ADFC,知FQ平面ABED,以Q为坐标原点,为轴正向,为y轴正向,为z轴正向,建立如图所示空间直角坐标系.由条件知则有所以即得BCEF. (II)解:由OB=1,OE=2,而OED是边长为2的正三角形,故 所以过点F作FQAD,交AD于点
5、Q,由平面ABED平面ACFD知,FQ就是四棱锥FOBED的高,且FQ=,所以6.(2011年北京) 如图,在四棱锥中,平面,底面是菱形,.()求证:平面()若求与所成角的余弦值;()当平面与平面垂直时,求的长.证明:()因为四边形ABCD是菱形,所以ACBD.又因为PA平面ABCD.所以PABD.所以BD平面PAC.()设ACBD=O.因为BAD=60,PA=PB=2,所以BO=1,AO=CO=.如图,以O为坐标原点,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0).所以设PB与AC所成角为,则()由()知设P(0,t)(t0),则设平面PBC的法向量
6、,则所以令则所以同理,平面PDC的法向量因为平面PCB平面PDC,所以=0,即解得所以PA=7. (2011年福建) 如图,四棱锥P-ABCD中,PA底面ABCD,四边形ABCD中,ABAD,AB+AD=4,CD=,(I)求证:平面PAB平面PAD;(II)设AB=AP (i)若直线PB与平面PCD所成的角为,求线段AB的长;(ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由。分析: 本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思
7、想,满分14分。解法一:(I)因为平面ABCD,平面ABCD,所以,又所以平面PAD。又平面PAB,所以平面平面PAD。(II)以A为坐标原点,建立空间直角坐标系Axyz(如图)在平面ABCD内,作CE/AB交AD于点E,则在中,DE=,设AB=AP=t,则B(t,0,0),P(0,0,t)由AB+AD=4,得AD=4-t,所以,(i)设平面PCD的法向量为,由,得取,得平面PCD的一个法向量,又,故由直线PB与平面PCD所成的角为,得解得(舍去,因为AD),所以(ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等,设G(0,m,0)(其中)则,由得,(2)由(1)、(
8、2)消去t,化简得(3)由于方程(3)没有实数根,所以在线段AD上不存在一个点G,使得点G到点P,C,D的距离都相等。从而,在线段AD上不存在一个点G,使得点G到点P,B,C,D的距离都相等。解法二:(I)同解法一。(II)(i)以A为坐标原点,建立空间直角坐标系Axyz(如图)在平面ABCD内,作CE/AB交AD于E,则。在平面ABCD内,作CE/AB交AD于点E,则在中,DE=,设AB=AP=t,则B(t,0,0),P(0,0,t)由AB+AD=4,得AD=4-t,所以,设平面PCD的法向量为,由,得取,得平面PCD的一个法向量,又,故由直线PB与平面PCD所成的角为,得解得(舍去,因为A
9、D),所以(ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等,由GC=CD,得,从而,即设这与GB=GD矛盾。所以在线段AD上不存在一个点G,使得点G到点B,C,D的距离都相等,从而,在线段AD上不存在一个点G,使得点G到点P,B,C,D的距离都相等。8.(2011年广东) 如图5在椎体P-ABCD中,ABCD是边长为1的棱形,且DAB=60,,PB=2,E,F分别是BC,PC的中点(1) 证明:AD 平面DEF;(2) 求二面角P-AD-B的余弦值法一:(1)证明:取AD中点G,连接PG,BG,BD。因PA=PD,有,在中,有为等边三角形,因此,所以平面PBG又PB/EF,得,而DE/GB得AD DE,又,所以AD 平面DEF。 (2),为二面角PADB的平面角,在在法二:(1)取AD中点为G,因为又为等边三角形,因此,从而平面PBG。延长BG到O且使得PO OB,又平面PBG,PO AD,所以PO 平面ABCD。以O为坐标原点,菱形的边长为单位长度,直线OB,OP分别为轴,z轴,平行于AD的直线为轴,建立如图所示空间直角坐标系。设由于 得平面DEF。 (2)取平面ABD的法向量设平面PAD的法向量由取