《特征值问答的计算方法.ppt》由会员分享,可在线阅读,更多相关《特征值问答的计算方法.ppt(57页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第八章 特征值问题的计算方法 /*Computational Method of Eigenvalue Problem*/,本章主要介绍矩阵的特征值和特征向量的计算方法。,特征值和特征向量的基本概念与性质,1 基本概念与性质,若 的所有特征值都是半单的,则称 是非亏损的。,相似矩阵有相同的特征值,设,本章QR算法的基本思想:,说明:对称矩阵的特征值总是良态的。,注意:实际问题中矩阵一般都是由计算或实验得到, 本身必然存在误差,不妨假设,2 幂法与反幂法/*Power Method and Reversed Power Method*/,幂法是计算一个矩阵的模最大的特征值和对应的特征 向量的一种
2、迭代方法(又称为乘幂法)。,一、幂法的基本思想与算法,假设 是可对角化的,即 存在如下分解:,其中,不妨假设,对于,说明:当k充分大时, 的一个近似特征向量为,特征向量可以相差一个倍数,因为向量 中含有未知量 ,实际不能计算,但我们关心的仅是 的方向,故作如下处理:,令,其中 为 的模最大分量,幂法迭代算法:,设 和 均收敛,由算法知,解:,Step1,Step2,Step3,Step4,特征值及相应的特征向量精确值为:,幂法的收敛性:,证明:,设 有如下Jordan分解:,是属于 的Jordan块构成的块上三角矩阵,是半单的特征值,令,将 和 如下分块:,记,是属于 的一个特征向量,几点说明
3、:,幂法的收敛速度取决于 的大小;,幂法可以计算第二个模最大特征值,常用的方法:降阶方法(收缩技巧),设已经计算出模最大特征值 及其特征向量,对向量 ,采用复的Household变换计算酉矩阵,其中 是n-1阶方阵,二、反幂法的基本思想与算法,反幂法是求一个矩阵的模最小的特征值和对应的特征 向量的一种迭代方法(又称为反迭代法)。,设 ,则,不妨假设 的特征值为,则 的特征值为,反幂法算法:,若 和 均收敛,由幂法知,带位移的反幂法:,实际应用中,反幂法主要用于求特征向量。,且用某种方法已经得到 的特征值 的近似值,对矩阵 采用反幂法迭代格式为:,记,假设 的特征值满足,求解方程组 化为:,带位
4、移的反幂法迭代格式:,设矩阵 存在Doolittle分解:,解:,其中,Step1,反幂法具有一次“迭代性”,Step2,所求近似特征向量为:,3 Jacobi方法,Jacobi法:计算实对称矩阵全部特征值和相应特征向量,基本思想,对,存在正交矩阵 ,满足,记,则,正交相似变换求法:通过Givens变换来实现,经典Jacobi方法,设,令,非对角“范数”,例如取,记,首先由 确定,其次确定旋转平面,由F-范数的正交不变性,设 经过一次正交相似变换后变为矩阵,注意到,经典Jacobi方法的迭代格式:,证明见教材,经典Jacobi方法的迭代算法,需比较 个元素,习惯上称 次Jacobi迭代为一次“
5、扫描”,循环Jacobi方法,自然顺序:,按照自然顺序的循环Jacobi方法是渐进平方收敛的,4 QR 方 法,基本思想,QR方法的迭代格式,设,令,对矩阵 进行QR分解,再对矩阵 进行QR分解,一、QR基本迭代方法,一般地有:,QR方法的迭代算法:,由迭代格式同时还得到:,记,代入,等式两端同时右乘,记,其中 是 的第一列, 是 的相应元素,QR方法的收敛性,证明:,令,则有,且,当m充分大时, 存在唯一QR分解:,且,(QR分解),记 的QR分解为:,为保证上述QR分解中上三角矩阵的对角元为正,令,由QR分解唯一性知:,代入,趋于上三角阵,实QR迭代格式,设,二、实Schur标准形,见文献
6、13,称下述形状的矩阵为上Hessenberg矩阵,三、上Hessenberg化,基本思想和约化过程:,记矩阵,下面采用Householde变换寻找,Step1 选取Householde变换 ,使得,其中,令,其中,Step2 选取Householde变换 ,使得,其中,令,令,其中,按照前述方法,经过n-2步后,可以得到:,记 ,则,称分解式 为矩阵 的上Hessenberg分解,上Hessenberg分解算法(8.4.1),然后对上Hessenberg矩阵进行QR迭代,上Hessenberg矩阵的QR迭代算法:,实用的QR迭代算法(仅计算特征值),四、三对角化(对称矩阵的上Hessenbe
7、rg化),设 为对称矩阵, 的上Hessenberg分解为,其中 为对称三对角矩阵。,Step1 选取Householde变换 ,使得,其中,令,其中,主要工作量在于计算,减少运算量,三对角分解算法(8.4.2),五、隐式对称的QR迭代方法(仅适用于对称矩阵),带原点位移的QR迭代格式:,迭代过程中产生的矩阵序列 均为三对角矩阵,的选取方法:,著名的Wilkinson位移,一种简单的取法-,记矩阵,令,取,收敛性见文献4,隐式对称QR迭代的实现方法,设一次对称QR迭代的格式为,例如:n=4时,Wilkinson位移隐式对称分解迭代算法(8.4.3),终止法则: 的下三角元素均趋于零,注:此算 法仅给出 了1次的 迭代过程.,