解三角形常见题型(7页).doc

上传人:1595****071 文档编号:37857267 上传时间:2022-09-02 格式:DOC 页数:7 大小:600.50KB
返回 下载 相关 举报
解三角形常见题型(7页).doc_第1页
第1页 / 共7页
解三角形常见题型(7页).doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《解三角形常见题型(7页).doc》由会员分享,可在线阅读,更多相关《解三角形常见题型(7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-解三角形常见题型-第 7 页解三角形常见题型正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。题型之一:求解斜三角形中的基本元素指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题1. 在中,AB=3,AC=2,BC=,则 ( )A B C D【答案】D 2(1)在中,已知,cm,解三角形;(2)在中,已知cm,cm,解三角形(角度精确到,边长精确到1cm)。3(1)在ABC中,已知,求b及A;(2)在ABC中,已知,解三角形4(2005年全国高考江苏卷) 中

2、,BC3,则的周长为( )A BC D分析:由正弦定理,求出b及c,或整体求出bc,则周长为3bc而得到结果选(D)5 (2005年全国高考湖北卷) 在ABC中,已知,AC边上的中线BD=,求sinA的值分析:本题关键是利用余弦定理,求出AC及BC,再由正弦定理,即得sinA解:设E为BC的中点,连接DE,则DE/AB,且,设BEx在BDE中利用余弦定理可得:,解得,(舍去)故BC=2,从而,即又,故,在ABC中,已知a2,b,C15,求A。答案:题型之二:判断三角形的形状:给出三角形中的三角关系式,判断此三角形的形状1. (2005年北京春季高考题)在中,已知,那么一定是( )A直角三角形

3、B等腰三角形 C等腰直角三角形 D正三角形解法1:由sin(AB)sinAcosBcosAsinB,即sinAcosBcosAsinB0,得sin(AB)0,得AB故选(B)解法2:由题意,得cosB,再由余弦定理,得cosB ,即a2b2,得ab,故选(B)评注:判断三角形形状,通常用两种典型方法:统一化为角,再判断(如解法1),统一化为边,再判断(如解法2)2在ABC中,若2cosBsinAsinC,则ABC的形状一定是( )A.等腰直角三角形B.直角三角形 C.等腰三角形D.等边三角形答案:C解析:2sinAcosBsin(AB)sin(AB)又2sinAcosBsinC,sin(AB)

4、0,AB3.在ABC中,若,试判断ABC的形状。答案:故ABC为等腰三角形或直角三角形。4. 在ABC中,判断ABC的形状。答案:ABC为等腰三角形或直角三角形。题型之三:解决与面积有关问题主要是利用正、余弦定理,并结合三角形的面积公式来解题1. (2005年全国高考上海卷) 在中,若,则的面积S_2在中,求的值和的面积。答案:3. (07浙江理18)已知的周长为,且(I)求边的长;(II)若的面积为,求角的度数解:(I)由题意及正弦定理,得,两式相减,得(II)由的面积,得,由余弦定理,得,所以题型之四:三角形中求值问题1. (2005年全国高考天津卷) 在中,所对的边长分别为,设满足条件和

5、,求和的值分析:本题给出一些条件式的求值问题,关键还是运用正、余弦定理解:由余弦定理,因此, 在ABC中,C=180AB=120B.由已知条件,应用正弦定理解得从而2的三个内角为,求当A为何值时,取得最大值,并求出这个最大值。解析:由A+B+C=,得=,所以有cos =sin。cosA+2cos =cosA+2sin =12sin2 + 2sin=2(sin )2+ ;当sin = ,即A=时, cosA+2cos取得最大值为。3在锐角中,角所对的边分别为,已知,(1)求的值;(2)若,求的值。解析:(1)因为锐角ABC中,ABCp,所以cosA,则(2),则bc3。将a2,cosA,c代入余

6、弦定理:中,得解得b。点评:知道三角形边外的元素如中线长、面积、周长等时,灵活逆用公式求得结果即可。4在中,内角对边的边长分别是,已知,()若的面积等于,求;()若,求的面积本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力满分12分解:()由余弦定理及已知条件得,又因为的面积等于,所以,得4分联立方程组解得,6分()由题意得,即,8分当时,当时,得,由正弦定理得,联立方程组解得,所以的面积12分题型之五:正余弦定理解三角形的实际应用利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识,例析如下:图1ABC

7、D(一.)测量问题1. 如图1所示,为了测河的宽度,在一岸边选定A、B两点,望对岸标记物C,测得CAB=30,CBA=75,AB=120cm,求河的宽度。分析:求河的宽度,就是求ABC在AB边上的高,而在河的一边,已测出AB长、CAB、CBA,这个三角形可确定。解析:由正弦定理得,AC=AB=120m,又,解得CD=60m。点评:虽然此题计算简单,但是意义重大,属于“不过河求河宽问题”。(二.)遇险问题2 某舰艇测得灯塔在它的东15北的方向,此舰艇以30海里/小时的速度向正东前进,30分钟后又测得灯塔在它的东30北。若此灯塔周围10海里内有暗礁,问此舰艇继续向东航行有无触礁的危险?西北南东AB

8、C3015图2解析:如图舰艇在A点处观测到灯塔S在东15北的方向上;舰艇航行半小时后到达B点,测得S在东30北的方向上。 在ABC中,可知AB=300.5=15,ABS=150,ASB=15,由正弦定理得BS=AB=15,过点S作SC直线AB,垂足为C,则SC=15sin30=7.5。这表明航线离灯塔的距离为7.5海里,而灯塔周围10海里内有暗礁,故继续航行有触礁的危险。点评:有关斜三角形的实际问题,其解题的一般步骤是:(1)准确理解题意,分清已知与所求,尤其要理解应用题中的有关名词和术语;(2)画出示意图,并将已知条件在图形中标出;(3)分析与所研究问题有关的一个或几个三角形,通过合理运用正

9、弦定理和余弦定理求解。(三.)追击问题图3ABC北45153 如图3,甲船在A处,乙船在A处的南偏东45方向,距A有9n mile并以20n mile/h的速度沿南偏西15方向航行,若甲船以28n mile/h的速度航行,应沿什么方向,用多少h能尽快追上乙船? 解析:设用t h,甲船能追上乙船,且在C处相遇。在ABC中,AC=28t,BC=20t,AB=9,设ABC=,BAC=。=1804515=120。根据余弦定理,(4t3)(32t+9)=0,解得t=,t=(舍)AC=28=21 n mile,BC=20=15 n mile。根据正弦定理,得,又=120,为锐角,=arcsin,又,arc

10、sin,甲船沿南偏东arcsin的方向用h可以追上乙船。点评:航海问题常涉及到解三角形的知识,本题中的 ABC、AB边已知,另两边未知,但他们都是航行的距离,由于两船的航行速度已知,所以,这两边均与时间t有关。这样根据余弦定理,可列出关于t的一元二次方程,解出t的值。4如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)?解析:连接BC,由余弦定理得BC2=202+10222010COS120=700.北2010ABC于是,BC=10。 ,sinACB=, ACB90,ACB=41。乙船应朝北偏东71方向沿直线前往B处救援。山水是一部书,枝枝叶叶的文字间,声声鸟鸣是抑扬顿挫的标点,在茂密纵深间,一条曲径,是整部书最芬芳的禅意。春风翻一页,桃花面,杏花眼,柳腰春细;夏阳读一页,蔷花满架,木槿锦绣、合欢幽香、蜀葵闲澹,一派峥嵘;秋风传一页,海棠妆欢,野菊淡姿,高远深邃;冬雪润一页,水仙临水一舞,腊梅素心磬口,向爱唱晚。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁