《计量经济学习题集 第二章(17页).doc》由会员分享,可在线阅读,更多相关《计量经济学习题集 第二章(17页).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-计量经济学习题集 第二章-第 17 页第二章 经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。本章的另一
2、个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。本章还有三方面的内容不容忽视。其一,若干基本假设。样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其
3、是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。Goss-markov定理表明OLS估计量是最佳线性无偏估计量。其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。生育率对教育年数的简单回归模型为(1)随机扰动项包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。解答:(1)收入、年龄、家庭状况、政府的相关政策等也是影响生育率的重要的因素,在上述简单回归模型中,它
4、们被包含在了随机扰动项之中。有些因素可能与增长率水平相关,如收入水平与教育水平往往呈正相关、年龄大小与教育水平呈负相关等。(2)当归结在随机扰动项中的重要影响因素与模型中的教育水平educ相关时,上述回归模型不能够揭示教育对生育率在其他条件不变下的影响,因为这时出现解释变量与随机扰动项相关的情形,基本假设4不满足。例2已知回归模型,式中E为某类公司一名新员工的起始薪金(元),N为所受教育水平(年)。随机扰动项的分布未知,其他所有假设都满足。(1)从直观及经济角度解释和。(2)OLS估计量和满足线性性、无偏性及有效性吗?简单陈述理由。(3)对参数的假设检验还能进行吗?简单陈述理由。解答:(1)为
5、接受过N年教育的员工的总体平均起始薪金。当N为零时,平均薪金为,因此表示没有接受过教育员工的平均起始薪金。是每单位N变化所引起的E的变化,即表示每多接受一年学校教育所对应的薪金增加值。(2)OLS估计量和仍满足线性性、无偏性及有效性,因为这些性质的的成立无需随机扰动项的正态分布假设。(3)如果的分布未知,则所有的假设检验都是无效的。因为t检验与F检验是建立在的正态分布假设之上的。 例3、在例2中,如果被解释变量新员工起始薪金的计量单位由元改为100元,估计的截距项与斜率项有无变化?如果解释变量所受教育水平的度量单位由年改为月,估计的截距项与斜率项有无变化? 解答:首先考察被解释变量度量单位变化
6、的情形。以E*表示以百元为度量单位的薪金,则由此有如下新模型或 这里,。所以新的回归系数将为原始模型回归系数的1/100。 再考虑解释变量度量单位变化的情形。设N*为用月份表示的新员工受教育的时间长度,则N*=12N,于是或 可见,估计的截距项不变,而斜率项将为原回归系数的1/12。例4、对没有截距项的一元回归模型称之为过原点回归(regrission through the origin)。试证明(1)如果通过相应的样本回归模型可得到通常的的正规方程组 则可以得到的两个不同的估计值: , 。 (2)在基本假设下,与均为无偏估计量。 (3)拟合线通常不会经过均值点,但拟合线则相反。 (4)只有
7、是的OLS估计量。解答:(1)由第一个正规方程 得或 求解得 由第2个下规方程得求解得 (2)对于,求期望这里用到了的非随机性。 对于,求期望(3)要想拟合值通过点,必须等于。但,通常不等于。这就意味着点不太可能位于直线上。相反地,由于,所以直线经过点。(4)OLS方法要求残差平方和最小Min 关于求偏导得即 可见是OLS估计量。例5假设模型为。给定个观察值,按如下步骤建立的一个估计量:在散点图上把第1个点和第2个点连接起来并计算该直线的斜率;同理继续,最终将第1个点和最后一个点连接起来并计算该条线的斜率;最后对这些斜率取平均值,称之为,即的估计值。(1)画出散点图,给出的几何表示并推出代数表
8、达式。(2)计算的期望值并对所做假设进行陈述。这个估计值是有偏的还是无偏的?解释理由。(3)证明为什么该估计值不如我们以前用OLS方法所获得的估计值,并做具体解释。解答:(1)散点图如下图所示。 (X2,Y2) (Xn,Yn) (X1,Y1)首先计算每条直线的斜率并求平均斜率。连接和的直线斜率为。由于共有1条这样的直线,因此(2)因为X非随机且,因此这意味着求和中的每一项都有期望值,所以平均值也会有同样的期望值,则表明是无偏的。(3)根据高斯马尔可夫定理,只有的OLS估计量是最付佳线性无偏估计量,因此,这里得到的的有效性不如的OLS估计量,所以较差。例6对于人均存款与人均收入之间的关系式使用美
9、国36年的年度数据得如下估计模型,括号内为标准差:0.538(1)的经济解释是什么?(2)和的符号是什么?为什么?实际的符号与你的直觉一致吗?如果有冲突的话,你可以给出可能的原因吗?(3)对于拟合优度你有什么看法吗?(4)检验是否每一个回归系数都与零显著不同(在1%水平下)。同时对零假设和备择假设、检验统计值、其分布和自由度以及拒绝零假设的标准进行陈述。你的结论是什么?解答: (1)为收入的边际储蓄倾向,表示人均收入每增加1美元时人均储蓄的预期平均变化量。 (2)由于收入为零时,家庭仍会有支出,可预期零收入时的平均储蓄为负,因此符号应为负。储蓄是收入的一部分,且会随着收入的增加而增加,因此预期
10、的符号为正。实际的回归式中,的符号为正,与预期的一致。但截距项为负,与预期不符。这可能与由于模型的错误设定形造成的。如家庭的人口数可能影响家庭的储蓄形为,省略该变量将对截距项的估计产生影响;另一种可能就是线性设定可能不正确。 (3)拟合优度刻画解释变量对被解释变量变化的解释能力。模型中53.8%的拟合优度,表明收入的变化可以解释储蓄中53.8 %的变动。(4)检验单个参数采用t检验,零假设为参数为零,备择假设为参数不为零。双变量情形下在零假设下t 分布的自由度为n-2=36-2=34。由t分布表知,双侧1%下的临界值位于2.750与2.704之间。斜率项计算的t值为0.067/0.011=6.
11、09,截距项计算的t值为384.105/151.105=2.54。可见斜率项计算的t 值大于临界值,截距项小于临界值,因此拒绝斜率项为零的假设,但不拒绝截距项为零的假设。三、习题(一)基本知识类题型2-1解释下列概念:1) 总体回归函数2) 样本回归函数3) 随机的总体回归函数4) 线性回归模型5) 随机误差项(ui)和残差项(ei)6) 条件期望7) 非条件期望8) 回归系数或回归参数9) 回归系数的估计量10) 最小平方法11) 最大似然法12) 估计量的标准差13) 总离差平方和14) 回归平方和15) 残差平方和16) 协方差17) 拟合优度检验18) t检验19) F检验2-2判断正
12、误并说明理由:1) 随机误差项ui和残差项ei是一回事2) 总体回归函数给出了对应于每一个自变量的因变量的值3) 线性回归模型意味着变量是线性的4) 在线性回归模型中,解释变量是原因,被解释变量是结果5) 随机变量的条件均值与非条件均值是一回事2-3回答下列问题:1) 线性回归模型有哪些基本假设?违背基本假设的计量经济学模型是否就不可估计?2) 总体方差与参数估计误差的区别与联系。3) 随机误差项ui和残差项ei的区别与联系。4) 根据最小二乘原理,所估计的模型已经使得拟合误差达到最小,为什么还要讨论模型的拟合优度问题?5) 为什么用决定系数R2评价拟合优度,而不用残差平方和作为评价标准?6)
13、 R2检验与F检验的区别与联系。7) 回归分析与相关分析的区别与联系。8) 最小二乘法和最大似然法的基本原理各是什么?说明它们有何区别?9) 为什么要进行解释变量的显著性检验?10) 是否任何两个变量之间的关系,都可以用两变量线性回归模型进行分析?2-2下列方程哪些是正确的?哪些是错误的?为什么?其中带“”者表示“估计值”。2-3下表列出若干对自变量与因变量。对每一对变量,你认为它们之间的关系如何?是正的、负的、还是无法确定?并说明理由。因变量自变量GNP利率个人储蓄利率小麦产出降雨量美国国防开支前苏联国防开支棒球明星本垒打的次数其年薪总统声誉任职时间学生计量经济学成绩其统计学成绩日本汽车的进
14、口量美国人均国民收入(二)基本证明与问答类题型2-4对于一元线性回归模型,试证明:(1)(2)(3) 2-5参数估计量的无偏性和有效性的含义是什么?从参数估计量的无偏性和有效性证明过程说明,为什么说满足基本假设的计量经济学模型的普通最小二乘参数估计量才具有无偏性和有效性?2-6对于过原点回归模型 ,试证明2-7 试证明:(1),从而:(2)(3);即残差与的估计值之积的和为零。2-8为什么在一元线性方程中,最小二乘估计量与极大似然估计量的表达式是一致的?证明:2的ML估计量为 ,并且是有偏的。2-9熟悉t统计量的计算方法和查表判断。2-10证明: ;其中R2是一元线性回归模型的判定系数,是y与
15、x的相关系数。2-11 试根据置信区间的概念解释t检验的概率意义,即证明:对于显著性水平,当时,bi的100(1-)%的置信区间不包含0。2-12线性回归模型的0均值假设是否可以表示为?为什么?2-13现代投资分析的特征线涉及如下回归方程:;其中:r表示股票或债券的收益率;rm表示有价证券的收益率(用市场指数表示,如标准普尔500指数);t表示时间。在投资分析中,1被称为债券的安全系数,是用来度量市场的风险程度的,即市场的发展对公司的财产有何影响。依据19561976年间240个月的数据,Fogler和Ganpathy得到IBM股票的回归方程;市场指数是在芝加哥大学建立的市场有价证券指数: (
16、0.3001) (0.0728) 要求:(1)解释回归参数的意义;(2)如何解释r2?(3)安全系数1的证券称为不稳定证券,建立适当的零假设及备选假设,并用t检验进行检验(=5%)。2-14 已知模型,证明:估计量可以表示为: 这里2-15已知两个量X和Y的一组观察值(xi,yi),i=1,2,n。证明:Y的真实值和拟合值有共同的均值。2-16一个消费分析者论证了消费函数是无用的,因为散点图上的点(,)不在直线上。他还注意到,有时Yi上升但Ci下降。因此他下结论:Ci不是Yi的函数。请你评价他的论据(这里Ci是消费,Yi是收入)。2-17证明:仅当R2=1时,y对x的线性回归的斜率估计量等于x
17、对y的线性回归的斜率估计量的倒数。2-18证明:相关系数的另一个表达式是: 其中为一元线性回归模型一次项系数的估计值,Sx、Sy分别为样本标准差。2-19对于经济计量模型: ,其OLS估计参数的特性在下列情况下会受到什么影响:(1)观测值数目n增加;(2)Xi各观测值差额增加;(3)Xi各观测值近似相等;(4)E(u2)=0 。2-20假定有如下的回归结果:,其中,Y表示美国的咖啡的消费量(每天每人消费的杯数),X表示咖啡的零售价格(美元/杯),t表示时间。要求:(1)这是一个时间序列回归还是横截面序列回归?做出回归线;(2)如何解释截距的意义,它有经济含义吗?如何解释斜率?(3)能否求出真实
18、的总体回归函数?(4)根据需求的价格弹性定义:弹性=斜率(X/Y),依据上述回归结果,你能求出对咖啡需求的价格弹性吗?如果不能,计算此弹性还需要其他什么信息?(三)基本计算类题型2-21下面数据是对X和Y的观察值得到的。Yi=1110; Xi=1680; XiYi=204200Xi2=315400; Yi2=133300假定满足所有的古典线性回归模型的假设,要求:(1)b1和b2?(2)b1和b2的标准差?(3)r2?(4)对B1、B2分别建立95%的置信区间?利用置信区间法,你可以接受零假设:B2=0吗?2-22假设王先生估计消费函数(用模型表示),并获得下列结果:,n=19 (3.1) (
19、18.7) R2=0.98 这里括号里的数字表示相应参数的T比率值。要求:(1)利用T比率值检验假设:b=0(取显著水平为5%);(2)确定参数估计量的标准方差;(3)构造b的95%的置信区间,这个区间包括0吗?2-23下表给出了每周家庭的消费支出Y(美元)与每周的家庭的收入X(美元)的数据。每周收入(X)每周消费支出(Y)8055,60,65,70,7510065,70,74,80,85,8812079,84,90,94,9814080,93,95,103,108,113,115160102,107,110,116,118,125180110,115,120,130,135,14020012
20、0,136,140,144,145220135,137,140,152,157,160,162240137,145,155,165,175,189260150,152,175,178,180,185,191 要求:(1)对每一收入水平,计算平均的消费支出,E(YXi),即条件期望值;(2)以收入为横轴、消费支出为纵轴作散点图;(3)在散点图中,做出(1)中的条件均值点;(4)你认为X与Y之间、X与Y的均值之间的关系如何?(5)写出其总体回归函数及样本回归函数;总体回归函数是线性的还是非线性的?2-24根据上题中给出的数据,对每一个X值,随机抽取一个Y值,结果如下:Y70659095110115
21、120140155150X80100120140160180200220240260要求:(1)以Y为纵轴、X为横轴作图,并说明Y与X之间是怎样的关系?(2)求样本回归函数,并按要求写出计算步骤;(3)在同一个图中,做出样本回归函数及从上题中得到的总体回归函数;比较二者相同吗?为什么?2-25下表给出了19901996年间的CPI指数与S&P500指数。年份CPIS&P500指数1990199119921993199419951996资料来源:总统经济报告,1997,CPI指数见表B-60,第380页;S&P指数见表B-93,第406页。要求:(1)以CPI指数为横轴、S&P指数为纵轴做图;(
22、2)你认为CPI指数与S&P指数之间关系如何?(3)考虑下面的回归模型:,根据表中的数据运用OLS估计上述方程,并解释你的结果;你的结果有经济意义吗?2-26下表给出了美国30所知名学校的MBA学生1994年基本年薪(ASP)、GPA分数(从14共四个等级)、GMAT分数以及每年学费的数据。学校ASP/美元GPAGMAT学费/美元Harvard10263065023894Stanford10080066521189Columbian10048064021400Dartmouth9541066021225Wharton8993065021050Northwestern8464064020634C
23、hicago8321065021656MIT8050065021690Virginia7428064317839UCLA7401064014496Berkeley7197064714361Cornell7197063020400NUY7066063020276Duke7049062321910Carnegie Mellon5989063520600North Carolina6988062110132Michigan6782063020960Texas618906258580Indiana5852061514036Purdue547205819556Case Western5720059117
24、600Georgetown6983061919584Michigan State4182059016057Penn State4912058011400Southern Methodist6091060018034Tulane4408060019550Illinois4713061612628Lowa416205909361Minnesota4825060012618Washington4414061711436要求:(1)用双变量回归模型分析GPA是否对ASP有影响?(2)用合适的回归模型分析GMAT分数是否与ASP有关?(3)每年的学费与ASP有关吗?你是如何知道的?如果两变量之间正相关,
25、是否意味着进到最高费用的商业学校是有利的;(4)你同意高学费的商业学校意味着高质量的MBA成绩吗?为什么?2-27从某工业部门抽取10个生产单位进行调查,得到下表所列的数据:单位序号年产量(万吨)y工作人员数(千人)x12345678910要求:假定年产量与工作人员数之间存在线性关系,试用经典回归估计该工业部门的生产函数及边际劳动生产率。2-28下表给出了1988年9个工业国的名义利率(Y)与通货膨胀率(X)的数据:国家Y(%)X(%)澳大利亚加拿大法国德国意大利墨西哥瑞典英国美国资料来源:原始数据来自国际货币基金组织出版的国际金融统计要求:(1)以利率为纵轴、通货膨胀率为横轴做图;(2)用O
26、SL进行回归分析,写出求解步骤;(3)如果实际利率不变,则名义利率与通货膨胀率的关系如何?(四)自我综合练习类题型2-29综合练习:自己选择研究对象,收集样本数据(利用我国公开发表的统计资料),应用计量经济学软件(建议使用Eviews3.1)完成建立计量经济学模型的全过程,并写出详细的研究报告。(通过练习,能够熟练应用计量经济学软件Eviews3.1中的最小二乘法)四、习题参考答案2-1答: 总体回归函数是指在给定下的的分布的总体均值与有函数关系。 样本回归函数指对应于某个给定的的值的一个样本而建立的回归函数。 随机的总体回归函数指含有随机误差项的总体回归函数,形如: 线性回归模型指对参数为线
27、性的回归,即只以它的1次方出现,对可以是或不是线性的。 随机误差项也称误差项,是一个随机变量,针对总体回归函数而言。 残差项是一随机变量,针对样本回归函数而言。 条件期望又称条件均值,指取特定值时的的期望值。 回归系数(或回归参数)指、等未知但却是固定的参数。 回归系数的估计量指用、等表示的用已知样本所提供的信息去估计出来的量。 估计量的标准差指度量一个变量变化大小的标准。 总离差平方和用TSS表示,用以度量被解释变量的总变动。 回归平方和用ESS表示,用以度量由解释变量变化引起的被解释变量的变化。 残差平方和用RSS表示,用以度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的。
28、 协方差用Cov(X,Y)表示,是用来度量X、Y二个变量同时变化的统计量。2-2答:错;错;错;错;错。(理由见本章其他习题答案)2-3答:线性回归模型的基本假设(实际是针对普通最小二乘法的基本假设)是:解释变量是确定性变量,而且解释变量之间互不相关;随机误差项具有0均值和同方差;随机误差项在不同样本点之间是独立的,不存在序列相关;随机误差项与解释变量之间不相关;随机误差项服从0均值、同方差的正态分布。违背基本假设的计量经济学模型还是可以估计的,只是不能使用普通最小二乘法进行估计。判定系数,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣。该值越大说明
29、拟合得越好。不是。 2-8证明:由于 ,因此 2-9证明: 根据定义得知,从而使得:证毕。 证毕。 证毕。 2-14答:线性回归模型:中的0均值假设不可以表示为:,因为前者表示取完所的可能的样本组合后的平均状态,而后者只是一个样本的平均值。 2-16证明:证毕。 2-17证明:满足正规方程即表明Y的真实值与拟合值有共同的均值。证毕。 2-18答:他的论据是错误的。原因是他忽略了随机误差项,这个随机误差项可取正值和负值,但是,将与的关系表达为是不准确的,而是一个平均关系。 2-19证明:设:由于:线性回归的斜率估计量:证毕。 2-20证明: 又, 证毕。 2-22解: 这是一个横截面序列回归。(
30、图略) 时刻为每磅0美元时,美国平均消费量为每天每人2.6911杯,这个数字没有经济意义;斜率-0.4795表示咖啡零售价与消费量负相关,在时刻,价格上升1美元/磅,则平均每天每人消费量减少0.4795杯; 不能; 不能;在同一条需求曲线上不同点的价格弹性不同,若要求出,须给出具体的值及与之对应的值。 2-23解: , , ,自由度为8,解得:的95%的置信区间。同理,解得:为的95%的置信区间。由于不在的置信区间内,故拒绝零假设:。 2-24解: 由于参数估计量的T比率值的绝对值为18.7且明显大于2,故拒绝零假设,从而在统计上是显著的; 参数的估计量的标准方差为15/3.1=4.84,参数的估计量的标准方差为0.81/18.7=0.043; 由的结果,的95%的置信区间为:,显然这个区间不包括0。 2-25解: