双曲线的定义及标准规定方程课件教材.ppt

上传人:小** 文档编号:3776417 上传时间:2020-10-25 格式:PPT 页数:28 大小:1.20MB
返回 下载 相关 举报
双曲线的定义及标准规定方程课件教材.ppt_第1页
第1页 / 共28页
双曲线的定义及标准规定方程课件教材.ppt_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《双曲线的定义及标准规定方程课件教材.ppt》由会员分享,可在线阅读,更多相关《双曲线的定义及标准规定方程课件教材.ppt(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、双曲线的定义及其标准方程,1、椭圆是如何定义的?,2a与2c的大小关 系,2.椭圆的标准方程?,2a ( 2a|F1F2|0),平面内与两定点F1、F2的距离的和等于常数,的点的轨迹,思考,若把椭圆定义中的与两定点的“距离的和”改成“距离的差”,那么点的轨迹会发生什么变化?能否形成曲线?若能,它的方程又怎样呢 ?,1取一条拉链; 2如图把它固定在板上的两点F1、F2; 3 拉动拉链(M)。 思考:拉链运动的轨迹是什么?,数学实验,yanshi,如图(A),,|MF1|-|MF2|=2a,如图(B),,|MF2|-|MF1|=2a,上面 两支合起来叫做双曲线,由可得:,| |MF1|-|MF2|

2、 | = 2a (差的绝对值),新宝马总部(墨尼黑),双曲线的定义:,平面内与两定点F1,F2的距离的差的绝对值等于常数2a 点的轨迹叫做双曲线。,F1,F2 -焦点,|MF1| - |MF2| = 2a,|F1F2| -焦距=2c,.,F2,.,F1,M,o,F1,F2,M,2、| | | | =2a,1、| | | | =2a,(2a | | ),(2a | | ),3、若常数2a = | |,4、若常数2a| |,F1,F2,轨迹不存在,x,o,设M(x , y),双曲线的焦 距为2c(c0),F1(-c,0),F2(c,0) 常数为2a,F1,F2,M,以F1,F2所在的直线为X轴,线

3、段F1F2的中点o为原点建立直角 坐标系,1. 建系.,2.设点,3.列式,|MF1| - |MF2|= 2a,4.化简.,F1,F2,双曲线的标准方程,标准方程,对换x,y可得:,其中:c2=a2+b2,焦点在y轴上,焦点在x轴上,正定轴,请判断下列方程哪些表示双曲线?并说出焦点位置和的a,b,c.,椭圆与双曲线比较,焦点在x轴上,焦点在y轴上,c2=a2+b2 ca0 a0 b0,|MF1|-|MF2|=2a,定义:,a,b,c关系,方程,|MF1|+|MF2|=2a,椭圆,双曲线,a2=b2+c2 ac0 ab0,大定轴,正定轴,双曲线及标准方程,例1:已知两定点F1(-5,0),F2(

4、5,0)求到这两点的距离之差的绝对值为8的点的轨迹方程。,解:810,由定义,所求的轨迹是焦点在x轴双曲线,,C=5,a=4 , b2=c2-a2=52-42=32,所以所求方程为:,双曲线及标准方程,例1:已知两定点F1(-5,0),F2(5,0)求到这两点的距离之差的绝对值为8的点的轨迹方程。,变式一:若两定点改为为F1(0,-5),F2(0,5) ,则轨迹如何?,变式二:若两定点改为为|F1F2|=10,则轨迹方程如何?,练习1:求适合下列条件的双曲线标准方程,(1)a=4,b=5,焦点在y轴上。,(2)a=3,c=5,课堂练习,双曲线及标准方程,课堂练习,(3)与双曲线 有相同焦距,双

5、曲线上一点P到F1、F2的距离之差的绝对值为4。,(4)与双曲线 的焦点相同,b=3.,练习2:已知双曲线的焦点在 y 轴上,并且双曲线上两 点P1、P2的坐标分别为(3 , - 4 ),( ,5),求 双曲线的标准方程,分析:因为双曲线的焦点在轴上,所以可设所求的双 曲线的标准方程为 因为点P1、P2在双曲线上,所以把这两点的坐标代入 方程,用待定系数法求解。,例2:k 1,则关于x、y的方程(1- k )x2+y2=k2- 1所表示的曲线是 ( ),解:原方程化为:,A、焦点在x轴上的椭圆,C、焦点在y轴上的椭圆,B、焦点在y轴上的双曲线,D、焦点在x轴上的双曲线, k1, k21 0 1

6、+k 0,方程的曲线为焦点在y轴上的双曲线。,故 选(B),方程 表示( ) A椭圆 B圆 C双曲线 D椭圆或圆或双曲线,D,变式一:,形如 的方程所表示的曲线形状由 m、n确定。,若m=n0,方程表示圆;,若m0,n0且 ,方程表示椭圆;,若mn0,方程表示双曲线。,变式二:,( 为定点, 为常数),小结,练习1、已知双曲线的焦点为F1(-5,0), F2(5,0)双曲线上一点到焦点的距离差的绝对值等于6,则 (1) a=_ , c =_ , b =_,(2) 双曲线的标准方程为_,(3)双曲线上一点, |PF1|=10, 则|PF2|=_,3,5,4,4或16,6,课堂练习,2已知两点F1(-5,0)、F2(5,0),动点P到F1和P到F2的距离的差等于8,则点P的轨迹是什么?,已知两点F1(-5,0)、F2(5,0),动点P到F1、F2距离的差的绝对值等于10,求点P的轨迹 如果动点P到F1、F2距离的差的绝对值等于12,点P的轨迹会出现什么情形?,课堂练习,4、若椭圆 与双曲线 的焦点相同,则 a =,3,课堂练习,3. 双曲线 的焦点坐标是 .,5 已知 表示双曲线,求k的取值范围。,课堂练习,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁