《微分方程深刻复习要点.ppt》由会员分享,可在线阅读,更多相关《微分方程深刻复习要点.ppt(60页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1一阶微分方程 2可降阶的二阶微分方程 3二阶线性微分方程的解的结构 4二阶常系数线性微分方程,一、第七章要点,1一阶微分方程,1)可分离变量的微分方程,解法,类型,2)一阶线性微分方程,类型,解法,3)齐次方程,此为变量可分离的微分方程,类型,解法 令 ,则 原方程变为,4)伯努利方程,为一阶线性微分方程,类型,解法 令 ,则原方程变为,2可降阶的二阶微分方程,方法 作 次积分,新方程是一个一阶微分方程,1)类型,2)类型,方法 令 ,则原方程转变为,新方程是一个一阶微分方程,3)类型,方法 令 ,则原方程转变为,3二阶线性微分方程的解的结构,设二阶线性微分方程,而称方程,为方程所对应的齐次
2、线性方程有,1)若 是方程的线性无关解,则方程有通解,的一个特解,2)若 是方程的特解,则方程有通解,3)若 是方程 的特解,,则 为方程,4二阶常系数线性微分方程,1)二阶常系齐次数线性微分方程,设方程,相应的特征方程为,则:若方程有两个不同的实根 ,则方程的通解为,若方程有两个相同的实根 ,则方程的通解为,若方程有一对共轭复根 ,则方程的通,解为,2)二阶常系数非齐次线性微分方程,设方程为,则方程有特解,其中 是一个与 同次的多项式,而,设方程,则方程有特解,其中 是 次的多项式, ,而,按 是否为特征方程的根而分别取1或0,二、例 题 选 讲,解 此方程为一个可分离变量的微分方程分离变量
3、,,因,得,例1 求解方程 ,两边积分,得,即得原方程的通解,解 原方程变形后为齐次方程,例2 求解方程 , ,作变换 ,则有,移项,得,两边积分,得,将 代入,有,即满足初始条件的解为,由初始条件 ,得 ,即原方程的解为,解 原方程变形为,即,例3 求微分方程 的通解,此是关于函数 的一阶线性非齐次线性微分方程,,由求解公式得,分离变量,得,两边积分,得,例4 求解微分方程 ,解法1 此方程为齐次方程,作代换 ,则有,故方程的通解为,即,由于,解法2 方程变形为,故方程的通解为,代回原变量,得,此方程为贝努利方程,此时令 ,则有,例5 求解下列方程,即,方程的解为,1. ; 2. ,解 1.
4、 此方程不含变量 ,故令变换 ,则方程为,即,所以,方程的通解为,方程变形为,即有,2. 此方程中不含变量 ,作变换 ,则,解得,即,分离变量后,再两边积分得,从而得方程的通解,由 ,得方程的解为 由,例6 求下列方程的通解,解 1. 特征方程为,解得 ,由此得到方程的通解,1. ; 2. ;,3. ,则,2. 特征方程为 ,因而齐次方程的通解为,由于 为单根,故可设方程的特解为,代入方程后,比较系数得,所以,因而方程的通解为,代入到原方程,得,3. 特征方程为 ,解得 ,所以齐次方,程的通解为,注意到 不是特征方程的根,故方程的特解可,设为,1一阶微分方程 2可降阶的二阶微分方程 3二阶线性
5、微分方程的解的结构 4二阶常系数线性微分方程,一、第七章要点,1一阶微分方程,1)可分离变量的微分方程,解法,类型,2)一阶线性微分方程,类型,解法,3)齐次方程,此为变量可分离的微分方程,类型,解法 令 ,则 原方程变为,4)伯努利方程,为一阶线性微分方程,类型,解法 令 ,则原方程变为,2可降阶的二阶微分方程,方法 作 次积分,新方程是一个一阶微分方程,1)类型,2)类型,方法 令 ,则原方程转变为,新方程是一个一阶微分方程,3)类型,方法 令 ,则原方程转变为,3二阶线性微分方程的解的结构,设二阶线性微分方程,而称方程,为方程所对应的齐次线性方程有,1)若 是方程的线性无关解,则方程有通
6、解,的一个特解,2)若 是方程的特解,则方程有通解,3)若 是方程 的特解,,则 为方程,4二阶常系数线性微分方程,1)二阶常系齐次数线性微分方程,设方程,相应的特征方程为,则:若方程有两个不同的实根 ,则方程的通解为,若方程有两个相同的实根 ,则方程的通解为,若方程有一对共轭复根 ,则方程的通,解为,2)二阶常系数非齐次线性微分方程,设方程为,则方程有特解,其中 是一个与 同次的多项式,而,设方程,则方程有特解,其中 是 次的多项式, ,而,按 是否为特征方程的根而分别取1或0,二、例 题 选 讲,解 此方程为一个可分离变量的微分方程分离变量,,因,得,例1 求解方程 ,两边积分,得,即得原
7、方程的通解,解 原方程变形后为齐次方程,例2 求解方程 , ,作变换 ,则有,移项,得,两边积分,得,将 代入,有,即满足初始条件的解为,由初始条件 ,得 ,即原方程的解为,解 原方程变形为,即,例3 求微分方程 的通解,此是关于函数 的一阶线性非齐次线性微分方程,,由求解公式得,分离变量,得,两边积分,得,例4 求解微分方程 ,解法1 此方程为齐次方程,作代换 ,则有,故方程的通解为,即,由于,解法2 方程变形为,故方程的通解为,代回原变量,得,此方程为贝努利方程,此时令 ,则有,例5 求解下列方程,即,方程的解为,1. ; 2. ,解 1. 此方程不含变量 ,故令变换 ,则方程为,即,所以,方程的通解为,方程变形为,即有,2. 此方程中不含变量 ,作变换 ,则,解得,即,分离变量后,再两边积分得,从而得方程的通解,由 ,得方程的解为 由,例6 求下列方程的通解,解 1. 特征方程为,解得 ,由此得到方程的通解,1. ; 2. ;,3. ,则,2. 特征方程为 ,因而齐次方程的通解为,由于 为单根,故可设方程的特解为,代入方程后,比较系数得,所以,因而方程的通解为,代入到原方程,得,3. 特征方程为 ,解得 ,所以齐次方,程的通解为,注意到 不是特征方程的根,故方程的特解可,设为,