拉格朗日中值定理的证明及应用.ppt

上传人:小** 文档编号:3768657 上传时间:2020-10-24 格式:PPT 页数:10 大小:455.52KB
返回 下载 相关 举报
拉格朗日中值定理的证明及应用.ppt_第1页
第1页 / 共10页
拉格朗日中值定理的证明及应用.ppt_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《拉格朗日中值定理的证明及应用.ppt》由会员分享,可在线阅读,更多相关《拉格朗日中值定理的证明及应用.ppt(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

拉格朗日(拉式)中值定理的证明方法及应用,一、定义:如果函数 满足:,1、在闭区间,上连续,2、在开区间,内可导,则至少存在一点,,使得,二、证明方法,可以利用弦倾角法做辅助函数,做辅助函数,由图得:,则有:,那么可以令,则有,由罗尔定理得:当,时,至少存在,一个数,使,,即,最后得出,即,三、拉格朗日中值定理的应用,1、证明等式 2、证明不等式 3、研究导数和函数的性质 4、证明有关中值问题的结论 5、判定方程根的存在性和唯一性 6、利用中值定理求极限,在,上连续, 在,证明存在,内可导,且,使,由于,上满足拉氏中值定理条件,且,在,例1:设,证明等式,所证结论左边为,证:,设辅助函数,即存在一个,使,原式成立,例2:设函数,证明,在,内有界。,证:取点,,再取异于,的点,,,对,在以,为端点的区间上用拉式中值定,,,理得:,界于,与,之间,(,),则有:,内可导,且,在,令,,则对任意,有,,即,内有界。,在,1+1=?,让我看看几点了,哥脸皮薄,So easy,科学一班五组,郭浩 刘均 王浚臣 李莎莎 许琴 王旭洪 刘兴隆 董大鹏 昝航,成员:,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁