《2022年初中数学知识重点总结.docx》由会员分享,可在线阅读,更多相关《2022年初中数学知识重点总结.docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、_归纳总结汇总_ - - - - - - - - - 学习必备 欢迎下载数学学问点总结一、基本学问一、数与代数 A、数与式: 1、有理数有理数:整数 正整数 /0/负整数分数 正分数 /负分数 数轴:画一条水平直线,在直线上取一点表示 0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴;任何一个有理数都可以用数轴上的一个点来表示;假如两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数;在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等;数轴上两个点表示的数,右边的总比左边的大;正数大于 0,负数小于 0,正数大于负
2、数;肯定值:在数轴上,一个数所对应的点与原点的距离叫做该数的肯定值; 正数的肯定值是他的本身、负数的肯定值是他的相反数、0 的肯定值是 0;两个负数比较大小,肯定值大的反而小;有理数的运算:加法:同号相加,取相同的符号,把肯定值相加;异号相加,肯定值相等时和为 0;肯定值不等时, 取肯定值较大的数的符号,并用较大的肯定值减去较小的肯定值;一个数与 0 相加不变;减法:减去一个数,等于加上这个数的相反数;乘法:两数相乘,同号得正,异号得负,肯定值相乘;任何数与 0 相乘得 0;乘积为 1 的两个有理数互为倒数;除法:除以一个数等于乘以一个数的倒数; 0 不能作除数;乘方:求 N 个相同因数 A
3、的积的运算叫做乘方,乘方的结果叫幂,A 叫底数, N 叫次数;混合次序:先算乘法,再算乘除,最终算加减,有括号要先算括号里的;2、实数 无理数:无限不循环小数叫无理数平方根: 假如一个正数 X 的平方等于 A,那么这个正数 X 就叫做 A 的算术平方根; 假如一个数 X 的平方等于 A,那么这个数 X 就叫做 A 的平方根;一个正数有 2 个平方根 /0 的平方根为 0/负数没有平方根;求一个数 A 的平方根运算,叫做开平方,其中 A 叫做被开方数;立方根:假如一个数 X 的立方等于A,那么这个数 X 就叫做 A 的立方根;正数的立方根是正数、0 的立方根是 0、负数的立方根是负数;求一个数
4、A 的立方根的运算叫开立方,其中 A 叫做被开方数;实数:实数分有理数和无理数;在实数范畴内,相反数,倒数,肯定值的意义和有理数范畴内的相反数,倒数,肯定值的意义完全一样;每一个实数都可以在数轴上的一个点来表示;3、代数式代数式:单独一个数或者一个字母也是代数式;合并同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项;把同类项合并成一项就叫做合并同类项;在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变;4、整式与分式整式:数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式;一个单项式中,全部字母的指数和叫做这个单项式的次数;一个多项式中,次数
5、最高的项的次数叫做这个多项式的次数;整式运算:加减运算时,假如遇到括号先去括号,再合并同类项;幂的运算: AM+AN=A (M+N )(AM ) N=AMN (A/B )N=AN/BN 除法一样;整式的乘法:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式;单项式与多项式相乘,就是依据安排律用单项式去乘多项式的每一项,再把所得的积相加;多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加;公式两条:平方差公式 /完全平方公式整式的除法:单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,
6、就连同他的指数一起作为商的一个因式;多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加;分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式;_精品资料_ - - - - - - -第 1 页,共 10 页_归纳总结汇总_ - - - - - - - - - 学习必备 欢迎下载方法:提公因式法、运用公式法、分组分解法、十字相乘法;分式:整式 A 除以整式 B,假如除式 B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0;分式的分子与分母同乘以或除以同一个不等于 0 的整式,分式的值不变;分式的运算:乘法:把分子相乘的积作为积的分子,把
7、分母相乘的积作为积的分母;除法:除以一个分式等于乘以这个分式的倒数;加减法:同分母分式相加减,分母不变,把分子相加减;异分母的分式先通分,化为同分母的分式,再加减;分式方程:分母中含有未知数的方程叫分式方程;使方程的分母为 B、方程与不等式 1、方程与方程组 一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是0 的解称为原方程的增根;1,这样的方程叫一元一次方程;等式两边同时加上或减去或乘以或除以(不为 0)一个代数式,所得结果仍是等式;解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为 1;二元一次方程:含有两个未知数,并且所含未知数的项的次数都是 方程组:两个二元
8、一次方程组成的方程组叫做二元一次方程组;1 的方程叫做二元一次方程;二元一次适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解;二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解;解二元一次方程组的方法:代入消元法 /加减消元法;一元二次方程:只有一个未知数,并且未知数的项的最高系数为 2 的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的明白,似乎解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特别情形,就是当 Y 的 0 的时候就构成了一元二次方程了;那假如在平面直角坐标系中表示
9、出来,一元二次方程就是二次函数中,图象与 X 轴的交点;也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a ),这大家要记住,很重要,由于在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出全部的一元一次方程的解1)配方法 利用配方,使方程变为完全平方公式,在用直接开平方法去求出解2分解因式法 提取公因式,套用公式法,和十字相乘法;在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解3公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1=- b+ b2-4ac/2a ,X2=-b-
10、 b2-4ac/2a 3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1 次项的系数的一半的平方,最终配成完全平方公式2分解因式法的步骤:把方程右边化为 0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,假如可以,就可以化为乘积的形式3公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为 c _精品资料_ 4)韦达定理利用韦达定理去明白, 韦达定理就是在一元二次方程中,二根之和 =-b/a ,二根之积 =c/a 也第 2 页,共 10 页可以表示为 x1+x2=-
11、b/a,x1x2=c/a;利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用- - - - - - -_归纳总结汇总_ - - - - - - - - - 学习必备 欢迎下载5)一元一次方程根的情形利用根的判别式去明白,根的判别式可在书面上可以写为为 3 种情形:I 当 0 时,一元二次方程有 2 个不相等的实数根;II 当 =0 时,一元二次方程有 2 个相同的实数根;“ ”,读作 “ diao ta ”,而 =b2-4ac ,这里可以分III 当 B,A+CB+C 在不等式中,假如减去同一个数(或加上一个负数),不等式符号不改向;例如:AB ,A-CB-C 在不等式中,假如乘以同
12、一个正数,不等号不改向;例如:在不等式中,假如乘以同一个负数,不等号改向;例如:假如不等式乘以 0,那么不等号改为等号AB ,A*CB*C (C0 )AB , A*CB*C ( C0 )所以在题目中,要求出乘以的数,那么就要看看题中是否显现一元一次不等式,假如显现了,那么不等式乘以的数就不等为 0,否就不等式不成立;3、函数变量:因变量,自变量;在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量;一次函数:如两个变量 X,Y 间的关系式可以表示成 Y=KX+B ( B 为常数, K 不等于 0)的形式,就称 Y是 X 的一次函数;当 B=0 时,称
13、 Y 是 X 的正比例函数;一次函数的图象:把一个函数的自变量 X 与对应的因变量 Y 的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,全部这些点组成的图形叫做该函数的图象;正比例函数 Y=KX 的图象是经过原点的一条直线;在一次函数中,当 K 0,B O,就经 234 象限;当 K0,B0 时,就经 124 象限;当 K 0,B 0 时,就经 134 象限;当 K 0, B0 时,就经 123 象限;当 K 0 时, Y 的值随 X 值的增大而增大,当 X 0 时, Y 的值随 X 值的增大而削减;二空间与图形A、图形的熟悉1、点,线,面点,线,面:图形是由点,线,面构成的;面
14、与面相交得线,线与线相交得点;点动成线,线动成面,面动成体;绽开与折叠:在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的全部侧_精品资料_ 棱长相等, 棱柱的上下底面的外形相同,侧面的外形都是长方体;N 棱柱就是底面图形有N 条边的棱柱;第 3 页,共 10 页- - - - - - -_归纳总结汇总_ - - - - - - - - - 学习必备 欢迎下载截一个几何体:用一个平面去截一个图形,截出的面叫做截面;视图:主视图,左视图,俯视图;多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形;弧、扇形: 由一条弧和经过这条弧的端点的两条半径所组成的图形
15、叫扇形;圆可以分割成如干个扇形;2、角 线:线段有两个端点;将线段向一个方向无限延长就形成了射线;射线只有一个端点;将线段的两 端无限延长就形成了直线;直线没有端点;经过两点有且只有一条直线;比较长短:两点之间的全部连线中,线段最短;两点之间线段的长度,叫做这两点之间的距离;角的度量与表示:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点;一度的1/60 是一分,一分的 1/60 是一秒;角的比较:角也可以看成是由一条射线围着他的端点旋转而成的;一条射线围着他的端点旋转,当终 边和始边成一条直线时,所成的角叫做平角;始边连续旋转,当他又和始边重合时,所成的角叫做周角;从一个角的
16、顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线;平行:同一平面内,不相交的两条直线叫做平行线;经过直线外一点,有且只有一条直线与这条直线 平行;假如两条直线都与第 3 条直线平行,那么这两条直线相互平行;垂直:假如两条直线相交成直角,那么这两条直线相互垂直;相互垂直的两条直线的交点叫做垂足;平面内,过一点有且只有一条直线与已知直线垂直;垂直平分线:垂直和平分一条线段的直线叫垂直平分线;垂直平分线垂直平分的肯定是线段,不能是射线或直线,这依据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了 把线段穿出 2 点;垂直平分线定理
17、:性质定理:在垂直平分线上的点到该线段两端点的距离相等;2 点后(关于画法,后面会讲)肯定要判定定理:到线段 2 端点距离相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线;定义中有几个要点要留意一下的,就是角的角平分线是一条射线,不是线段也不是直线,许多时,在题目中会显现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点性质定理:角平分线上的点到该角两边的距离相等判定定理:到角的两边距离相等的点在该角的角平分线上正方形:一组邻边相等的矩形是正方形性质:正方形具有平行四边形、菱形、矩形的一切性质判定: 1、对角线相等的
18、菱形 2、邻边相等的矩形二、基本定理1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的全部线段中,垂线段最短 7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8、假如两条直线都和第三条直线平行,这两条直线也相互平行 9、同位角相等, 两直线平行 10 、内错角相等, 两直线平行 11、同旁内角互补,两直线平行 12 、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补15、定理 三角形两边的和大于第三边 16、推论 三角形
19、两边的差小于第三边 17、三角形内角和定理 三角形三个内角的和等于 180 18 、推论 1 直角三角形的两个锐角互余 19、推论 2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论 3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等22、边角边公理 SAS 有两边和它们的夹角对应相等的两个三角形全等_精品资料_ - - - - - - -第 4 页,共 10 页_归纳总结汇总_ - - - - - - - - - 学习必备 欢迎下载23、角边角公理 ASA 有两角和它们的夹边对应相等的 两个三角形全等24、推论 AAS 有两角和其中一角的对边对应
20、相等的两个三角形全等25、边边边公理 SSS 有三边对应相等的两个三角形全等26、斜边、直角边公理HL 有斜边和一条直角边对应相等的两个直角三角形全等27 、定理 1 在角的平分线上的点到这个角的两边的距离相等28、定理 2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的全部点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等即等边对等角)31、推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合33、推论 3 等边三角形的各角都相等,并且每一个角都等于 6034、等腰三角形的判定定理
21、 假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论 1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于 60的等腰三角形是等边三角形37、在直角三角形中,假如一个锐角等于 30那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的全部点的集合42、定理 1 关于某条直线对称的两个图形是全等形43、定理 2 假如两个图形关于某直线对称,那么对称轴是对应
22、点连线的垂直平分线 44 、定理 3 两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理 假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理 直角三角形两直角边 a、b 的平方和、等于斜边 c 的平方,即 a2+b2=c2 47、勾股定理的逆定理 假如三角形的三边长 a、 b、c 有关系 a2+b2=c2 ,那么这个三角形是直角三角形 48、定理 四边形的内角和等于 36049、四边形的外角和等于 36050 、多边形内角和定理 n 边形的内角的和等于( n-2)18051、推论 任意多边的外角和等于 360 52
23、、平行四边形性质定理 1 平行四边形的对角相等53、平行四边形性质定理 2 平行四边形的对边相等 54 、推论 夹在两条平行线间的平行线段相等 55、平行四边形性质定理 3 平行四边形的对角线相互平分56、平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理 2 两组对边分别相等的四边 形是平行四边形58、平行四边形判定定理 3 对角线相互平分的四边形是平行四边形59、平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60、矩形性质定理 1 矩形的四个角都是直角 61、矩形性质定理 2 矩形的对角线相等 62、矩形判定定理 1 有三个角是直角的四边形是
24、矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64 、菱形性质定理1 菱形的四条边都相等65、菱形性质定理 2 菱形的对角线相互垂直,并且每一条对角线平分一组对角即 S= ( a b)2 67、菱形判定定理 1 四边都相等的四边形是菱形68、菱形判定定理 2 对角线相互垂直的平行四边形是菱形69、正方形性质定理 1 正方形的四个角都是直角,四条边都相等66、菱形面积 =对角线乘积的一半,70、正方形性质定理2 正方形的两条对角线相等,并且相互垂直平分,每条对角线平分一组对角71 、定理1 关于中心对称的两个图形是全等的_精品资料_ - - - - - - -第 5 页,共 10 页_归
25、纳总结汇总_ - - - - - - - - - 学习必备欢迎下载73、逆定理如72、定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75、等腰梯形的两条对角线相等 76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形 77、对角线相等的梯形是等腰梯形 78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰8
26、0、推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b )2 S=L h 83、1比例的基本性质:假如 a:b=c:d, 那么 ad=bc 假如 ad=bc , 那么 a:b=c:d 84、 2合比性质:如果 a b=c d,那么 abb=cd d 85、3 等比性质:假如 a b=c d= =m nb+d+ +n 0, 那么 a+c+ +m b+d+ +n=a b 86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
27、88、定理如87、推论平行于三角形一边的直线截其他两边(或两边的延长线) ,所得的对应线段成比例果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相像 91、相像三角形判定定理 1 两角对应相等,两三角形相像(ASA ) 92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相像 93、判定定理 2 两边对应成比例且夹角相等,两三角形相像 ( SAS )9
28、4、判定定理 3 三边对应成比例,两三角形相像(SSS ) 95、定理 假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相像96、性质定理 1 相像三角形对应高的比,对应中线的比与对应角平分线的比都等于相像比 97、性质定理2 相像三角形周长的比等于相像比 98、性质定理 3 相像三角形面积的比等于相像比的平方 99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101 、圆是定点的距离等于定长的点的集合102 、圆的内部可以
29、看作是圆心的距离小于半径的点的集合103 、圆的外部可以看作是圆心的距离大于半径的点的集合104 、同圆或等圆的半径相等 105 、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107 、到已知角的两边距离相等的点的轨迹,是这个角的平分线 108 、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109 、定理 不在同始终线上的三点确定一个圆;110 、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111 、推论 1平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两
30、条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112 、推论 2 圆的两条平行弦所夹的弧相等 113 、圆是以圆心为对称中心的中心对称图形 114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115 、推论 在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都_精品资料_ 相等 116 、定理一条弧所对的圆周角等于它所对的圆心角的一半第 6 页,共 10 页117 、推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中, 相等的圆周角所对的弧
31、也相等118 、推论 2 半圆(或直径)所对的圆周角是直角;90 的圆周角所对的弦是直径119 、推论 3 假如三角形一边上的中线- - - - - - -_归纳总结汇总_ - - - - - - - - - 等于这边的一半,那么这个三角形是直角三角形学习必备欢迎下载圆的内接四边形的对角互补,并且任何一个120 、定理外角都等于它的内对角 121 、直线 L 和 O 相交 dr 直线 L 和 O 相切 d=r 直线 L 和 O 相离 d r 122 、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123 、切线的性质定理 圆的切线垂直于经过切点的半径 124 、推论 1 经过
32、圆心且垂直于切线的直线必经过切点 125、推论 2 经过切点且垂直于切线的直线必经过圆心 126 、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角 127 、圆的外切四边形的两组对边的和相等128 、弦切角定理 弦切角等于它所夹的弧对的圆周角 129 、推论 假如两个弦切角所夹的弧相等,那么这两个弦切角也相等130 、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等131 、推论 假如弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 132 、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的
33、比例中项 133 、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等 134 、假如两个圆相切,那么切点肯定在连心线上135 、两圆外离 dR+r 两圆外切 d=R+r 两圆相交 R-r dR+rR r两圆内切d=R-rR r 两圆内含 d R-rR r 136 、定理 相交两圆的连心线垂直平分两圆的公共弦 137 、定理 把圆分成 nn 3:依次连结各分点所得的多边形是这个圆的内接正 n 边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形 138 、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139、正 n
34、边形的每个内角都等于( n-2 )180n 140、定理 正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形141 、正 n 边形的面积 Sn=pnrn 2 p 表示正 n 边形的周长 142 、正三角形面积 3a4 a 表示边长143 、假如在一个顶点四周有k 个正 n 边形的角,由于这些角的和应为360 ,因此 kn-2180n=360化为( n-2 )k-2=4 144 、弧长运算公式:L=n 兀 R180 3 同角或等角的补角相等4 同角或145 、扇形面积公式:S 扇形 =n 兀 R2 360=LR 2 146 、内公切线长 = d-R-r 外公切线长 = d-R
35、+r 中学数学公式大全1 过两点有且只有一条直线2 两点之间线段最短等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的全部线段中,垂线段最短7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行8 假如两条直线都和第三条直线平行,这两条直线也相互平行 9 同位角相等, 两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等13 两直线平行,内错角相等 14 两直线平行,同旁内角互补15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边17 三角形内角和定理 三角形三个内角的和等于 18
36、0 18 推论 1 直角三角形的两个锐角互余 19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、 对应角相等22 边角边公理 SAS 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理 ASA 有两角和它们的夹边对应相等的两个三角形全等24 推论 AAS 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理 SSS 有三边对应相等的两个三角形全等_精品资料_ 26 斜边、直角边公理HL 有斜边和一条直角边对应相等的两个直角三角形全等第 7 页,共 10 页- - - - - - -
37、_归纳总结汇总_ - - - - - - - - - 学习必备 欢迎下载27 定理 1 在角的平分线上的点到这个角的两边的距离相等 28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的全部点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等即等边对等角)31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合33 推论 3 等边三角形的各角都相等,并且每一个角都等于60(等角对等边)35 34 等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等推
38、论 1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于 60的等腰三角形是等边三角形37 在直角三角形中,假如一个锐角等于30那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的全部点的集合 42 定理 1 关于某条直线对称的两个图形是全等形 43 定理2 假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 对称,假如它们的对应线段或延长线相交,那么交点在对称轴
39、上44 定理 3 两个图形关于某直线45 逆定理 假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46 勾股定理 直角三角形两直角边 a、 b 的平方和、等于斜边 c 的平方,即 a2+b2=c2 47 勾股定理的逆定理 假如三角形的三边长 a、 b、 c 有关系 a2+b2=c2 ,那么这个三角形是直角三角形48 定理 四边形的内角和等于 360 49 四边形的外角和等于 36050 多边形内角和定理 n 边形的内角的和等于(n-2 )180 51 推论 任意多边的外角和等于 360 52 平行四边形性质定理 1 平行四边形的对角相等 53 平行四边形性质定理
40、2 平行四边形的对边相等 54 推论 夹在两条平行线间的平行线段相等 55 平行四边形性质定理 3 平行四边形的对角线相互平分 56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理 3 对角线相互平分的四边形是平行四边形 59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形 60 矩形性质定理 1 矩形的四个角都是直角 61 矩形性质定理 2 矩形的对角线相等 62 矩形判定定理 1 有三个角是直角的四边形是矩形 63 矩形判定定理 2 对角线相等的平行四边形是矩形 64
41、菱形性质定理 1 菱形的四条边都相等 65 菱形性质定理 2 菱形的对角线相互垂直,并且每一条对角线平分一组对角 66 菱形面积 =对角线乘积的一半,即 S=( ab) 2 67 菱形判定定理 1 四边都相等的四边形是菱形 68 菱形判定定理 2 对角线相互垂直的平行四边形是菱形69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等70 正方形性质定理 2 正方形的两条对角线相等,并且相互垂直平分, 每条对角线平分一组对角 71 定理 1 关于中心对称的两个图形是全等的 72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73 逆定理 假如两个图形的对
42、应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75 等腰梯形的两条对角线相等 76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77 对角线相等的梯形是等腰梯形 78 平行线等分线段定理 假如一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第 三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L= ( a+b)2 S=L h 83 1 比例的基本性质 假如 a:b=c:d,那么 ad=bc 假如 ad=bc,那么 a:b=c:d 84 2合比性质假如 a b=c d,那么 a bb=c dd 85 3等比性质假如 a b=c d= =mnb+d+ +n 0,那么 a+c+ +mb+d