《第十一讲 位值原理(3页).doc》由会员分享,可在线阅读,更多相关《第十一讲 位值原理(3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-第十一讲 位值原理-第 3 页第十一讲 位值原理同一个数字,由于它在所写的数里的位置不同,所表示的数也不同。也就是说,每一个数字除了本身的值以外,还有一个“位置值”。例如“5”,写在个位上,就表示5个一;写在十位上,就表示5个十;写在百位上,就表示5个百;等等。这种把数字和数位结合起来表示数的原则,称为写数的位值原则。我们通常使用的是十进制计数法,其特点是“满十进一”。就是说,每10个某一单位就组成和它相邻的较高的一个单位,即10个一,叫做“十”,10个十叫做“百”,10个百叫做“千”,等等。写数时,从右端起,第一位是个位,第二位是十位,第三位是百位,第四位是千位,等等(见下图)。用阿拉伯数
2、字和位值原则,可以表示出一切整数。例如,926表示9个百,2个十,6个一,即926=9100+210+6。根据问题的需要,有时我们也用字母代替阿拉伯数字表示数,如:其中a可以是19中的数码,但不能是0,b和c是09中的数码。下面,我们利用位值原则解决一些整数问题。数之差必然能被9整除。例如,(97531-13579)必是9的倍数。例2有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数相差666。求原来的两位数。小精分析与解:由位值原则知道,把数码1加在一个两位数前面,等于加了100;把数码1加在一个两位数后面,等于这个两位数乘以10后再加1。设
3、这个两位数为x。由题意得到(10x+1)-(100+x)=666,10x+1-100-x=666,10x-x=666-1+100,9x=765,x=85。原来的两位数是85。例3 a,b,c是19中的三个不同的数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的多少倍?分析与解:用a,b,c组成的六个不同数字是这六个数的和等于将六个数的百位、十位、个位分别相加,得到所以,六个数的和是(a+b+c)的222倍。例4用2,8,7三张数字卡片可以组成若干个不同的三位数,所有这些三位数的平均值是多少?解:由例3知,可以组成的六个三位数之和是(2+8+7)222,所以平均值是(2+8+7)2
4、226=629。例5一个两位数,各位数字的和的5倍比原数大6,求这个两位数。(a+b)5-(10a+b)=6,5a+5b-10a-b=6,4b-5a=6。当b=4,a=2或b=9,a=6时,4b-5a=6成立,所以这个两位数是24或69。例6将一个三位数的数字重新排列,在所得到的三位数中,用最大的减去最小的,正好等于原来的三位数,求原来的三位数。分析与解:设原来的三位数的三个数字分别是a,b,c。若站由上式知,所求三位数是99的倍数,可能值为198,297,396,495,594,693,792,891。经验证,只有495符合题意,即原来的三位数是495。练习17 1.有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数之和是970。求原来的两位数。2.有一个三位数,将数码1加在它的前面可以得到一个四位数,将数码3加在它的后面也可以得到一个四位数,这两个四位数之差是2351,求原来的三位数。5.从19中取出三个数码,用这三个数码组成的六个不同的三位数之和是3330。这六个三位数中最小的能是几?最大的能是几?6.一个两位数,各位数字的和的6倍比原数小9,求这个两位数。7.一个三位数,抹去它的首位数之后剩下的两位数的4倍比原三位数大1,求这个三位数。