第五单元《鸽巢问题》例1例2教学设计(10页).doc

上传人:1595****071 文档编号:37402758 上传时间:2022-08-31 格式:DOC 页数:10 大小:134KB
返回 下载 相关 举报
第五单元《鸽巢问题》例1例2教学设计(10页).doc_第1页
第1页 / 共10页
第五单元《鸽巢问题》例1例2教学设计(10页).doc_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《第五单元《鸽巢问题》例1例2教学设计(10页).doc》由会员分享,可在线阅读,更多相关《第五单元《鸽巢问题》例1例2教学设计(10页).doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-第五单元鸽巢问题例1例2 教学设计-第 10 页第五单元 数学广角第一课时 鸽巢问题 例1例2 教学设计教学内容: 人教版教材六年级数学上册第68-69 页。教学目标:1知识与技能:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。 2过程与方法:通过操作发展学生的类推能力,形成比较抽象的数学思维。3情感态度价值观:通过“鸽巢原理”的灵活应用感受数学的魅力。 教学重、难点 :经历“鸽巢原理”的探究过程,理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。 课时安排:一课时教具学具:多媒体课件、每人一枚一元硬币教学过程 一、问题引入。 师:同学们,你们玩过

2、抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来? 1游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。 2讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗? 游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。 引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。 二、探究新知 (一)教学例1 1出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法? 师:请同学们实际放放看,谁来

3、展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。 板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1), 问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢? 引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。 问题: (1)“总有”是什么意思?(一定有) (2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?) 教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢? 学生思考

4、并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。 问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。) 总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。 2完成课下“做一做”,学习解决问题。 问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么? (

5、1)学生活动独立思考自主探究 (2)交流、说理活动。 引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。 总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。 (二)教学例2 1出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?(留给学生思考的空间,师巡视了解各种情况) 2学

6、生汇报,教师给予表扬后并总结: 总结1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。 总结2:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。 问题:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2”可以吗?(学生讨论) 引导学生思考:到底是“商+1”还是“商+余数”呢?谁的结论对呢?(学生小组里进行研究、讨论。) 总结:用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。 师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由1

7、9世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。 (三)学生自学例题3并进行自主交流,试着用手中的用具模拟演示场景。作业设计:把红黄蓝白四种颜色的球各10个放到一个袋子里,至少取出多少个球,可以保证取到两个颜色相同的球?板书设计数学广角 -“鸽巢原理”物体数抽屉数=商余数至少数=商+1 第五单元 数学广角第二课时 鸽巢问题 例3 教学设计 教学内容: 小学数学六年级下册P93例7及练习十八6题。 教

8、学目标: 1. 通过观察、猜测、实验、推理等活动,寻找隐藏在实际问 题背后的“抽屉问题”的一般模型。体会如何对一些简单的实际问题“模型化”,用“抽屉原理”加以解决。 2.在经历将具体问题“数学化”的过程中,发展数学思维能力和解决问题的能力,感受数学的魅力。同时积累数学活动的经验与方法,在灵活应用中,进一步理解“抽屉原理”。 教学重点、难点: 1教学重点:利用“抽屉原理”解决实际问题。 2教学难点:怎样把具体问题转化为“抽屉问题”。 教学准备: 一个袋子、4个红球和4个蓝球为一份,准备这样的教、学具若干份。小抽屉、6个红球和6个篮球。教学过程: 一、游戏导入新课1、组织学生玩“抽幸运学生”的游戏

9、,从全班学生的姓名中抽起3名幸运观众,猜测一定有2人是同一性别的,打开验证。2、这里面其实隐藏着一个非常重要的数学原理。(板书:抽屉原理3)二、推波逐浪,探究新知1、请3名幸运学生上台抽取幸运礼物,有2人是同一颜色的。2、看看抽屉里到底装了多少个球?打开抽屉,让两种球一样多,现在要把抽屉像孙悟空一样的会变。(出示课件)3. 把剩下的4个红球和4个蓝球装到盒子里,晃动几下师:同学们,猜一猜:摸一个球可能会是什么颜色的?4.如果老师想让这位同学摸出的球,一定有2个同色的,最少要摸出几个球?(课件出示)例题,。 例:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,一次最少要摸出几个

10、球? (学生可能有不同的回答) 5、师:那么就让我们摸2个球试试看吧?(开火车摸) (1)摸出几种情况?(3种)(课件出示)(2)摸2个球能满足题目要求吗?为什么?(3)哪就摸3个球、4个球、5个球看一看,那一个能满足题目要求。6、摸之前老师要给同学们一些提示。(出示课件)(1)生默读提示。(2)师要求4个组摸3个球;3个组摸4个球;3个组摸5个球,组与组之间要比赛,最先完成的组有奖励7、小组合作摸球,(课件出示记录表)。 (1)小组活动 (2)汇报展示。(用投影仪)师:刚才同学们通过讨论和动手操作得出了怎样的结果? 请每个小组派代表展示讨论结果。其他小组有不同想法可以补充汇报。 (3)老师把

11、每个组摸到的情况统计如下。(出示课件) (4)观察你有什么发现?(生自由说)板书:颜色 保证同色 一次最少摸 2种 2个 3个师小结:要想摸出的球一定有2个同色的,最少要摸出3个球。8探究推理。(1)师:同学们,抽屉隐身了,但我们可以把什么看作抽屉?有几个抽屉?有红、蓝两种颜色的球,就可以把两种“颜色”看成两个“抽屉”,同色”就意味着“同一个抽屉”。这样就把“摸球问题”转化成“抽屉问题”。(2)用抽屉原理怎样描述?(生说后)(课件出示)假设两种颜色的球各拿了一个,也就是在两个抽屉里各拿了一个球,不管从哪个抽屉里再拿一个球,都有2个球是同色的。板书:假设法 3=2x1+19、把红、黄、蓝、白四种

12、颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取到2个颜色相同的球?(1)学生思考,然后回答。(2)引导用假设法说。板书:5 =4x1+1(3)用颜色种数来说。板书:4种 2个 5个(4)如果是5种颜色?6种颜色呢?发现什么规律? (5)小结:“ 要保证摸出2个同色的球,摸出的球的数量至少要比颜色种数多1。 三、巩固应用,内化提高1、把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取到3个颜色相同的球?2、综合应用(1)能禹小学六(2)班有41人,生说:六(2)班中至少有4人是在同一个月出生的,该生说的对吗?为什么?(2)能禹小学大约有370名学生,生说:全校里一定有2人的生日是在同一天。该生说的对吗?为什么? 四、课堂总结:通过本节课的学习你有什么收获? 五、板书设计: 数学广角(三) 颜色 保证同色 一次最少摸 2种 2个 3个 4种 2个 5个 5种 2个 6个 假设法: 3=2x1+1 5=4*1+1 6=5*1+1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁