《第26章反比例函数单元教学计划(3页).doc》由会员分享,可在线阅读,更多相关《第26章反比例函数单元教学计划(3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-第26章 反比例函数单元教学计划-第 3 页第26章 反比例函数单元教学计划一、“课标要求” 1、探索简单实例中的数量关系和变化规律,了解常量、变量的意义。2、结合实例,了解函数的概念和三种表示方法,能举出函数的实例。3、能结合图象对简单实际问题中的函数关系进行分析。4、能确定简单实际问题中函数自变量的取值范围,并会求出函数值。5、能用适当的函数表示法刻画简单实际问题中变量之间的关系。6、结合对函数关系的分析,能对变量的变化情况进行初步讨论。7、结合具体情景体会反比例函数的意义,能根据已知条件确定函数的表达式。8、能画出反比例函数的图象,根据图象和表达式探索并理解K0与K0时图像的变化。9、
2、能用反比例函数解决简单实际问题。 二、教材分析:本章的主要内容有反比例函数的概念、解析式、性质和图象、本章是在已经学习了图形与坐标和一次函数的基础上,再次进入函数范畴,使学生进一步理解函数的内涵,并感受世界存在的各种函数及应用函数来解决实际问题、反比例函数是最基本的函数之一,是后续学习各类函数的基础。本章的主要内容是反比例函数,教科书从几个学生熟悉的实际问题出发,引进反比例函数的概念,使学生逐步从对具体函数的感性认识上升到对抽象的反比例函数概念的理性认识。三、教学目标知识与技能: (1)领会反比例函数的意义,理解反比例函数的概念。(2)能根据实际问题中的条件确定反比例函数的关系式。(3)掌握反
3、比例函数的图象的性质。(4)能利用反比例函数的图象的性质解决实际问题。 过程与方法:经历分析实际问题中变量之间的关系建立反比例函数模型,进而解决实际问题的过程。运用反比例函数的解析式和图像表示问题情景中成反比例的量之间的关系,进而利用反比例函数的图像及性质解决问题。 情感态度与价值观: 体会数学与现实生活的紧密性,培养学生的情感、态度,增强应用意识,体会数形结合的数学思想。培养学生自由学习、运用代数方法解决实际问题的能力。 四、教学重点、难点 反比例函数是继一次函数之后又一重要的基本函数,它为今后学习图象和曲线的关系(如二次函数)提供了研究方法、反比例函数本身在日常生活和生产中也有着许多直接应
4、用,这对学生建模思想、数形结合思想等重要思想方法的形成,也会产生较大的影响,所以反比例函数是本章教学的重点。 反比例函数图象的两个分支,给反比例函数的性质带来复杂性,学生不易理解,是本章教学的难点之一;综合运用反比例函数的解析式、图象和性质解决实际问题时,往往会遇到较复杂的问题情境,需要建模,利用图象以及综合运用方程、不等式及其他数学模型,所以综合运用反比例函数知识解较复杂的实际问题是本章教学又一主要难点。五、教学措施 (1)反比例函数概念和形成过程,应充分利用学生的生活经验和背景知识、生活经验就是学生已经知道两个量成反比例的概念,建立反比例函数离不开反比例关系这个基础;背景知识是八年级上册的
5、“图形与坐标”及“一次函数”、所以在学习本章内容前可先与学生一起回顾一下以上已学内容,对扫清障碍,理解接受新概念很有益处。(2)注重数学思想的渗透,从数学自身发展过程看,正是由于变量与函数概念的引入,标志着初等数学向高等数学迈进,尽管本章讲述的反比例函数仅是一种最基本、最初步的函数,但其中蕴涵的数学思想方法,对学生分析问题解决问题是十分有益的、教学中应让学生充分体会诸如变化与对应思想、数形结合思想,建模思想等。(3)本章是实践性、应用性很强的内容,联系“科学”的知识特别多、这一方面体现教材的横向联系,又体现本章内容的实用价值、如密度、压强与体积、杠杆原理、欧姆定理、电功率计算等、若学生在这方面
6、有缺陷,则直接影响到本章的学习、建议老师在教前在同学中广泛了解学生的基础,若有问题应给予补充说明。(4)在画反比例函数的图象时充分发挥“自主探索合作学习”这种学习方式的作用。在按课本顺序指导学生画完图后,让学生回顾画图的全过程体现课标要求“性质的探索过程根据图象和解析表达式探索并理解其性质”。引导学生分清:两个分支是一个函数的图象,不是函数有两个图象。画曲线时,必须将自变量从小到大的顺序在各个象限里用光滑曲线连结起来,不能跨象限连结在图象所在的每个象限内,当k0时,函数值y随自变量x的增大而减小;当k0时,函数值y随自变量x的增大而增大。(5)在教学中应充分利用,注意各章节之间的内在联系。在这
7、里就尽量用图形变换的思想叙述性质、用图形变换的角度观察、分析图形之间的联系如反 比例函数的图象是关于原点成中心对称,利用这一性质可以简化画图过程;xy1的图象与x y1的图象关于坐标轴对称,我们可以通过图形变换来作另一函数的图象。(6)本章还渗透了建模的思想。具体过程可概括为:由实验获得数据-用描点法画出图象-根据图象和数据判断或估计函数的类别-用待定系数法求出函数的关系式-用实验数据验证。随着社会的发展和科学技术的不断进步,数学的应用已越来越被人们所重视,培养学生分析问题、解决实际问题的能力已成为当今数学教育的主流。中学数学建模正顺应了这一时代发展的潮流,是对陈旧的数学教育观下的数学教育的有力冲击中学数学建模从学生所经历,所接触到的客观实际中提出问题,对学生了解社会,认识社会都有积极作用。通过数学建模,对数学的广泛应用有了进一步认识,促使学生在积极思考中,在问题的解决中发现数学的价值与美。同时数学建模的复杂性,决不是凭个人的力量可以完美解决的,因此强调群体的协作通过实际考察、实验统计、演义推理、总结提炼,最后又相互交流,共同探讨,共同解决。解决问题过程中充分体现高度的协作精神,教科书中的渗透正是体现了这种思想。 六、课时安排 26.1 反比例函数 4课时 26.2 实际问题与反比例函数 4课时 第26章 单元小结章与单元测试 1课时