《相似三角形教案(8页).doc》由会员分享,可在线阅读,更多相关《相似三角形教案(8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-相似三角形教案-第 8 页4.5 相似三角形(一)教学重点: 相似三角形定义的理解和认识。 (二)教学难点: 1.相似三角形的定义所揭示的本质属性的理解和应用; 2.例2后想一想中“渗透三角形相似与平行的内在联系”是本节课的第二个难点。(三)教法与学法分析: 本节课将借助生活实际和图形变换创设宽松的学习环境; 并利用多媒体手段辅助教学,直观、形象,体现数学的趣味性。 学生则通过观察类比、动手实践、自主探索、合作交流的学习方式完成本节课的学习。教学目标:1知识与技能 (1). 掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。 (2). 能根据相似比进行计算,训练学生判断能力及
2、对数学定义的运用能力。2 过程与方法 (1). 领会教学活动中的类比思想,提高学生学习数学的积极性。 (2). 经过本节的学习,培养学生通过类比得到新知识的能力,掌握相似三角形 的定义及表示法,会运用相似比解决相似三角形的边长问题。 3 情感态度与价值观 (1). 经历相似多边形有关概念的类比,渗透类比的数学思想,并领会特殊与一般的关系。 (2). 深化对相似三角形定义的理解和认识.发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。三、教学过程分析第一环节 情景引入 归纳定义活动内容:回顾与思考(教师展示课件并设问,学生观察类比、自主探索归纳相似三角形的定义)1.上
3、节课我们学习了相似多边形的定义及记法, 请同学们观察下列图形,并指出哪些图形相似?相似图形的对应边、对应角有什么关系?2.请问相似三角形是相似多边形吗?请同学们回忆一下什么叫相似多边形?3.那么由“相似多边形的定义”你能得出“相似三角形的定义”吗?4.相似三角形的定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形(similar trangles)如ABC与DEF相似,记作ABCDEF第二环节:运用定义 解决问题活动内容:想一想 议一议 例1 例21.想一想(展示课件,教师引导、学生自主探索并归纳出相似三角形的性质)如果ABCDEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关
4、系?对应边呢?解:A与D、B与E、C与F.是对应角 AB与DE AC与DF BC与EF是对应边 A=D、B=E、C=F.相似三角形性质:相似三角形的对应角相等,对应边成比例。2.议一议(展示课件,让学生动手画一画、量一量、算一算,并小组讨论,选代表说明理由)(1)两个全等三角形一定相似吗?为什么?(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?解:(1)两个全等三角形一定相似.因为两个全等三角形的对应边相等,对应角相等,由对应边相等可知对应边一定成比例,且相似比为1,因此满足相似三角形的两个条件,所以两个全等三角形一定相似
5、.(2)两个直角三角形不一定相似. 如图,虽然都是直角三角形,但也只能确定有一对角即直角相等,其他的两对角可能相等,也可能不相等,对应边也不一定成比例,所以它们不一定相似.两个等腰直角三角形一定相似. 如图, 在RtABC和RtDEF中,C=F=90,则A=B=D=E=45,所以有A=D,B=E,C=F.再设ABC中AC=b,DEF中DF=a,则AC=BC=b,AB=bDF=EF=a,DE=a=1 所以两个等腰直角三角形一定相似.(3)如图,两个等腰三角形不一定相似. 如图:因为等腰只能说明一个三角形中有两边相等,但另一边不固定,因此这两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应
6、腰的比,因此不用再去讨论对应角满足什么条件,就可以确定这两个等腰三角形不一定相似 如图:两个等边三角形一定相似. 因为等边三角形的各边都相等,各角都等于60度,因此这两个等边三角形一定有对应角相等、对应边成比例,所以它们一定相似. 例1 例2(展示课件,教师引导分析、学生自主探索,培养学生应用知识解决问题的能力)3.如图,有一块呈三角形形状的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的长都是3.5 cm,求该草坪其他两边的实际长度. 解:草坪的形状与其图纸上相应的形状相似,它们的相似比是20005=4001如果设其他两边的实际长度都是x cm,那么=则 x=3
7、.5400=1400(cm)=14(m)所以,草坪其他两边的实际长度都是14 m .4.如图,已知ABCADE, AE=50 cm, EC=30 cm, BC=70 cm, BAC=45,ACB=400,求 (1)AED和ADE的度数。 (2)DE的长.解:(1)因为ABCADE.所以由相似三角形对应角相等,得AED=ACB=40在ADE中,AED+ADE+A=180即40+ADE+45=180,所以ADE=1804045=95.(2)因为ABCADE,所以由相似三角形对应边成比例,得= 即=所以 DE=43.75(cm) 1.想一想在例2的条件下,图4-16中有哪些线段成比例?解:成比例线段
8、有=ABCADE= 即=图中有互相平行的线段,即DEBC.因为ABCADE,所以ADE=B.由平行线的判定方法知DEBC.2.合作探究1. 在下面的两组图形中,各有两个相似三角形,试确定x,y,m,n的值.解:在(1)中ABOCDO x=32在(2)中,由两三角形相似可知:对应角相等,对应边成比例.所以,n=55,m=80, y=2.等腰直角三角形ABC与等腰直角三角形ABC相似,相似比为31,已知斜边AB=5 cm,(1) 求 ABC斜边AB的长, (2) 求ABC斜边AB上的高。 解:(1) 如图所示,因为ABCABC,AA且相似比为31. AD所以 =. 即= BCCBAB=(cm) D (2) CD=AB=(cm) 3.巩固练习: 略第四环节 回顾反思 课堂小结表示法相似比(对应边的比)“ ”对应边成比例对应角相等定义相似三角形活动内容:1.这一节课你学到了什么?有什么收获?3.相似三角形的判定方法定义法活动目的:培养学生的归纳总结能力,加深对知识的理解和应用能力。活动实际效果:通过小结发现每个学生都在积极思索这节课的内容,并能正确回答出相似三角形的定义、性质、以及它的表示法。第五环节 布置作业活动内容:习题4.6 1 、 2