《泰安市2017年中考数学试题及解析(16页).doc》由会员分享,可在线阅读,更多相关《泰安市2017年中考数学试题及解析(16页).doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-泰安市2017年中考数学试题及解析-第 16 页2017年山东省泰安市中考数学试卷参考答案与试题解析一、选择题(本大题共20小题,每小题3分,共60分)1(2017泰安)下列四个数:3,1,其中最小的数是()AB3C1D【解答】解:13,最小的数为,故选A2(2017泰安)下列运算正确的是()Aa2a2=2a2Ba2+a2=a4C(1+2a)2=1+2a+4a2D(a+1)(a+1)=1a2【解答】解:A、a2a2=a4,此选项错误;B、a2a2=2a2,此选项错误;C、(1+2a)2=1+4a+4a2,此选项错误;D、(a+1)(a+1)=1a2,此选项正确;故选:D3(2017泰安)下列
2、图案其中,中心对称图形是()ABCD【解答】解:不是中心对称图形;不是中心对称图形;是中心对称图形;是中心对称图形故选:D4(2017泰安)“2014年至2016年,中国同一带一路沿线国家贸易总额超过3万亿美元”,将数据3万亿美元用科学记数法表示为()A31014美元B31013美元C31012美元D31011美元【解答】解:3万亿=3 0000 0000 0000=31012,故选:C5(2017泰安)化简(1)(1)的结果为()ABCD【解答】解:原式=,故选A6(2017泰安)下面四个几何体:其中,俯视图是四边形的几何体个数是()A1B2C3D4【解答】解:俯视图是四边形的几何体有正方体
3、和三棱柱,故选:B7(2017泰安)一元二次方程x26x6=0配方后化为()A(x3)2=15B(x3)2=3C(x+3)2=15D(x+3)2=3【解答】解:方程整理得:x26x=6,配方得:x26x+9=15,即(x3)2=15,故选A8(2017泰安)袋内装有标号分别为1,2,3,4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为()ABCD【解答】解:画树状图为:共有16种等可能的结果数,其中所成的两位数是3的倍数的结果数为5,所以成的两位数是3的倍数的概率=故选B9(2
4、017泰安)不等式组的解集为x2,则k的取值范围为()Ak1Bk1Ck1Dk1【解答】解:解不等式组,得不等式组的解集为x2,k+12,解得k1故选:C10(2017泰安)某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A10=B+10=C10=D+10=【解答】解:设第一批购进x件衬衫,则所列方程为:+10=故选:B11(2017泰安)为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一
5、次中考体育科目测试(把测试结果分为A,B,C,D四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图,根据统计图中提供的信息,结论错误的是()A本次抽样测试的学生人数是40B在图1中,的度数是126C该校九年级有学生500名,估计D级的人数为80D从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为0.2【解答】解:A、本次抽样测试的学生人数是:1230%=40(人),正确,不合题意;B、360=126,的度数是126,故此选项正确,不合题意;C、该校九年级有学生500名,估计D级的人数为:500=100(人),故此选项错误,符合题意;D、从被测学生中随机抽取一位,则这位学生的成绩是
6、A级的概率为:=0.2,正确,不合题意;故选:C12(2017泰安)如图,ABC内接于O,若A=,则OBC等于()A1802B2C90+D90【解答】解:连接OC,ABC内接于O,A=,BOC=2A=2,OB=OC,OBC=OCB=90故选D13(2017泰安)已知一次函数y=kxm2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()Ak2,m0Bk2,m0Ck2,m0Dk0,m0【解答】解:一次函数y=kxm2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,k20,m0,k2,m0故选A14(2017泰安)如图,正方形ABCD中,M为BC上一点
7、,MEAM,ME交AD的延长线于点E若AB=12,BM=5,则DE的长为()A18BCD【分析】先根据题意得出ABMMCG,故可得出CG的长,再求出DG的长,根据MCGEDG即可得出结论【解答】解:四边形ABCD是正方形,AB=12,BM=5,MC=125=7MEAM,AME=90,AMB+CMG=90AMB+BAM=90,BAM=CMG,B=C=90,ABMMCG,=,即=,解得CG=,DG=12=AEBC,E=CMG,EDG=C,MCGEDG,=,即=,解得DE=故选B15(2017泰安)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表: x1 0 1 3 y3 1 3 1下列结
8、论:抛物线的开口向下;其图象的对称轴为x=1;当x1时,函数值y随x的增大而增大;方程ax2+bx+c=0有一个根大于4,其中正确的结论有()A1个B2个C3个D4个【解答】解:由表格可知,二次函数y=ax2+bx+c有最大值,当x=时,取得最大值,抛物线的开口向下,故正确,其图象的对称轴是直线x=,故错误,当x时,y随x的增大而增大,故正确,方程ax2+bx+c=0的一个根大于1,小于0,则方程的另一个根大于=3,小于3+1=4,故错误,故选B16(2017泰安)某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:金额/元5102050100人数4161596则他们捐款金额的中位
9、数和平均数分别是()A10,20.6B20,20.6C10,30.6D20,30.6【分析】根据中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,找出最中间两个数的平均数;根据平均数公式求出平均数即可【解答】解:共有50个数,中位数是第25、26个数的平均数,中位数是(20+20)2=20;平均数=(54+1016+2015+509+1006)=30.6;故选:D17(2017泰安)如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线与边AD所在直线垂直于点M,若ABC=55,则ACD等于()A20B35C40D55【解答】解:圆内接四边形ABCD的边AB过圆心O,ADC+ABC
10、=180,ACB=90,ADC=180ABC=125,BAC=90ABC=35,过点C的切线与边AD所在直线垂直于点M,MCA=ABC=55,AMC=90,ADC=AMC+DCM,DCM=ADCAMC=35,ACD=MCADCM=5535=20;故选:A18(2017泰安)如图,在正方形网格中,线段AB是线段AB绕某点逆时针旋转角得到的,点A与A对应,则角的大小为()A30B60C90D120【分析】根据题意确定旋转中心后即可确定旋转角的大小【解答】解:如图:显然,旋转角为90,故选C19(2017泰安)如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CFBE交AB于点F,
11、P是EB延长线上一点,下列结论:BE平分CBF;CF平分DCB;BC=FB;PF=PC,其中正确结论的个数为()A1B2C3D4【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案【解答】证明:BC=EC,CEB=CBE,四边形ABCD是平行四边形,DCAB,CEB=EBF,CBE=EBF,BE平分CBF,正确;BC=EC,CFBE,ECF=BCF,CF平分DCB,正确;DCAB,DCF=CFB,ECF=BCF,CFB=BCF,BF=BC,正确;FB=BC,CFBE,B点一定在FC的垂直平分线上,即PB垂直平分FC,PF=PC,故正确故选:D20(2017泰
12、安)如图,在ABC中,C=90,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为()A19cm2B16cm2C15cm2D12cm2【解答】解:在RtABC中,C=90,AB=10cm,BC=8cm,AC=6cm设运动时间为t(0t4),则PC=(6t)cm,CQ=2tcm,S四边形PABQ=SABCSCPQ=ACBCPCCQ=68(6t)2t=t26t+24=(t3)2+15,当t=3时,四边形PABQ的面积取最小值,最小值为15故选C二、填空题(本大
13、题共4小题,每小题3分,共12分)21(2017泰安)分式与的和为4,则x的值为3【解答】解:分式与的和为4,+=4,去分母,可得:7x=4x8解得:x=3经检验x=3是原方程的解,x的值为3故答案为:322(2017泰安)关于x的一元二次方程x2+(2k1)x+(k21)=0无实数根,则k的取值范围为k【解答】解:根据题意得=(2k1)24(k21)0,解得k故答案为k23(2017泰安)工人师傅用一张半径为24cm,圆心角为150的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为2cm【解答】解:由题意可得圆锥的母线长为:24cm,设圆锥底面圆的半径为:r,则2r=,解得:r=10,故这个圆锥
14、的高为:=2(cm)故答案为:2(cm)24(2017泰安)如图,BAC=30,M为AC上一点,AM=2,点P是AB上的一动点,PQAC,垂足为点Q,则PM+PQ的最小值为【分析】本题作点M关于AB的对称点N,根据轴对称性找出点P的位置,如图,根据三角函数求出MN,N,再根据三角函数求出结论【解答】解:作点M关于AB的对称点N,过N作NQAC于Q交AB于P,则NQ的长即为PM+PQ的最小值,连接MN交AB于D,则MDAB,DM=DN,NPB=APQ,N=BAC=30,BAC=30,AM=2,MD=AM=1,MN=2,NQ=MNcosN=2=,故答案为:三、解答题(本大题共5小题,共48分)25
15、(8分)(2017泰安)如图,在平面直角坐标系中,RtAOB的斜边OA在x轴的正半轴上,OBA=90,且tanAOB=,OB=2,反比例函数y=的图象经过点B(1)求反比例函数的表达式;(2)若AMB与AOB关于直线AB对称,一次函数y=mx+n的图象过点M、A,求一次函数的表达式【解答】解:(1)过点B作BDOA于点D,设BD=a,tanAOB=,OD=2BDODB=90,OB=2,a2+(2a)2=(2)2,解得a=2(舍去2),a=2OD=4,B(4,2),k=42=8,反比例函数表达式为:y=;(2)tanAOB=,OB=2,AB=OB=,OA=5,A(5,0)又AMB与AOB关于直线
16、AB对称,B(4,2),OM=2OB,M(8,4)把点M、A的坐标分别代入y=mx+n,得解得,故一次函数表达式为:y=x26(8分)(2017泰安)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?
17、【解答】解:(1)设小樱桃的进价为每千克x元,大樱桃的进价为每千克y元,根据题意可得:解得:,小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200(4030)+(1610)=3200(元),销售完后,该水果商共赚了3200元;(2)设大樱桃的售价为a元/千克,(120%)20016+200a8000320090%,解得:a41.6,答:大樱桃的售价最少应为41.6元/千克27(10分)(2017泰安)如图,四边形ABCD中,AB=AC=AD,AC平分BAD,点P是AC延长线上一点,且PDAD(1)证明:BDC=PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE
18、的长【分析】(1)直接利用等腰三角形的性质结合互余的定义得出BDC=PDC;(2)首先过点C作CMPD于点M,进而得出CPMAPD,求出EC的长即可得出答案【解答】(1)证明:AB=AD,AC平分BAD,ACBD,ACD+BDC=90,AC=AD,ACD=ADC,ADC+BDC=90,BDC=PDC;(2)解:过点C作CMPD于点M,BDC=PDC,CE=CM,CMP=ADP=90,P=P,CPMAPD,设CM=CE=x,CE:CP=2:3,PC=x,AB=AD=AC=1,解得:x=,故AE=1=28(11分)(2017泰安)如图,是将抛物线y=x2平移后得到的抛物线,其对称轴为直线x=1,与
19、x轴的一个交点为A(1,0),另一个交点为B,与y轴的交点为C(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BCNC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由【分析】(1)已知抛物线的对称轴,因而可以设出顶点式,利用待定系数法求函数解析式;(2)首先求得B和C的坐标,易证OBC是等腰直角三角形,过点N作NHy轴,垂足是H,设点N纵坐标是(a,a2+2a+3),根据CH=NH即可列方程求解;(3)四边形OAPQ是平行四边形,则PQ=OA=1,且P
20、QOA,设P(t,t2+2t+3),代入y=x+,即可求解【解答】解:(1)设抛物线的解析式是y=(x1)2+k把(1,0)代入得0=(11)2+k,解得k=4,则抛物线的解析式是y=(x1)2+4,即y=x2+2x+3;(2)在y=x2+2x+3中令x=0,则y=3,即C的坐标是(0,3),OC=3B的坐标是(3,0),OB=3,OC=OB,则OBC是等腰直角三角形OCB=45,过点N作NHy轴,垂足是HNCB=90,NCH=45,NH=CH,HO=OC+CH=3+CH=3+NH,设点N纵坐标是(a,a2+2a+3)a+3=a2+2a+3,解得a=0(舍去)或a=1,N的坐标是(1,4);(
21、3)四边形OAPQ是平行四边形,则PQ=OA=1,且PQOA,设P(t,t2+2t+3),代入y=x+,则t2+2t+3=(t+1)+,整理,得2t2t=0,解得t=0或t2+2t+3的值为3或P、Q的坐标是(0,3),(1,3)或(,)、(,)29(11分)(2017泰安)如图,四边形ABCD是平行四边形,AD=AC,ADAC,E是AB的中点,F是AC延长线上一点(1)若EDEF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF,ED与EF垂直吗?若垂直给出证明【分析】(1
22、)根据平行四边形的想知道的AD=AC,ADAC,连接CE,根据全等三角形的判定和性质即可得到结论;(2)根据全等三角形的性质得到CF=AD,等量代换得到AC=CF,于是得到CP=AB=AE,根据平行四边形的判定定理即可得到四边形ACPE为平行四边形;(3)过E作EMDA交DA的延长线于M,过E作ENFC交FC的延长线于N,证得AMECNE,ADECFE,根据全等三角形的性质即可得到结论【解答】(1)证明:在ABCD中,AD=AC,ADAC,AC=BC,ACBC,连接CE,E是AB的中点,AE=EC,CEAB,ACE=BCE=45,ECF=EAD=135,EDEF,CEF=AED=90CED,在CEF和AED中,CEFAED,ED=EF;(2)解:由(1)知CEFAED,CF=AD,AD=AC,AC=CF,DPAB,FP=PB,CP=AB=AE,四边形ACPE为平行四边形;(3)解:垂直,理由:过E作EMDA交DA的延长线于M,过E作ENFC交FC的延长线于N,在AME与CNE中,AMECNE,ADE=CFE,在ADE与CFE中,ADECFE,DEA=FEC,DEA+DEC=90,CEF+DEC=90,DEF=90,EDEF【点评】本题考查了平行四边形的性质和判定,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键