《倾向值匹配法(PSM).ppt》由会员分享,可在线阅读,更多相关《倾向值匹配法(PSM).ppt(48页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、倾向值匹配法(PSM),Q:为什么要使用PSM?,A:解决样本选择偏误带来的内生性问题 例:上北大有助于提高收入吗? 样本选择偏误:考上北大的孩子本身就很出色(聪明、有毅力、能力强) 解决方法:样本配对,配对方法,同行业(一维配对) 同行业、规模相当(二维配对) 同行业、规模相当、股权结构相当、(多维配对)? PSM:把多个维度的信息浓缩成一个(降维:多维到一维),配对过程中的两个核心问题(1),Q1:哪个样本更好一些?,A1:Sample2较好:比较容易满足共同支撑假设(common support assumption),配对过程中的两个核心问题(2),Q2:stu c1,c2,c3三人中
2、,谁是stu PK的最佳配对对象? A2:stu c3是最佳配对对象,比较容易满足平行假设(balancing assumption),ATT(Average Treatment Effect on the Treated)平均处理效应的衡量,运用得分进行样本匹配并比较,估计出ATT值。 ATT=EY(1)-Y(0) |T=1 Y(1):Stu PK 上北大后的年薪 Y(0): Stu PK 假如不上北大的年薪,可观测数据,不可观测数据,采用配对者的收入来代替,ATT=12W-9W=3W,实例介绍,实例介绍,研究问题:培训对工资的效应 基本思想:分析接受培训行为与不接受培训行为在工资表现上的差
3、异。但是,现实可以观测到的是处理组接受培训的事实,而如果处理组没有接受培训会怎么样是不可观测的,这种状态称为反事实。匹配法就是为了解决这种不可观测的事实的方法。,实例介绍,分组:在倾向值匹配法中,根据处理指示变量将样本分为两个组。处理组,在本例中就是在NSW(国家支持工作示范项目)实施后接受培训的组;控制组,在本例中就是在NSW实施后不接受培训的组。 研究目的:通过对处理组和对照组的匹配,在其他条件完全相同的情况下,通过接受培训的组(处理组)与不接受培训的组(控制组)在工资表现上的差异来判断接受培训的行为与工资之间的因果关系。,变量定义,变量定义,倾向打分,OLS回归结果,工资的变化到底是来自
4、个体的异质性 性还是培训?,倾向打分,1.设定宏变量 (1)设定宏变量breps表示重复抽样200次 命令:global breps 200 (2)设定宏变量x,表示age agesq educ educsq married black hisp re74 re75 re74sq re75sq u74black 命令:global x age agesq educ educsq married black hisp re74 re75 re74sq re75sq u74black,倾向打分,2.通过logit模型进行倾向打分 命令:pscore treat $x,pscore(mypscore
5、) blockid(myblock) comsup numblo(5) level(0.05) logit 注:$表示引用宏变量,pscore结果,倾向值分布,倾向值分布,block中样本的分布,block中的描述性统计,运用得分进行样本匹配并比较,方法一:最邻近方法(nearest neighbor matching),含义:最邻近匹配法是最常用的一种匹配方法,它把控制组中找到的与处理组个体倾向得分差异最小的个体,作为自己的比较对象 。 优点:按处理个体找控制个体,所有处理个体都会配对成功,处理组的信息得以充分使用。 缺点:由于不舍弃任何一个处理组,很可能有些配对组的倾向得分差距很大,也将其
6、配对,导致配对质量不高,而处理效应ATT的结果中也会包含这一差距,使得ATT精确度下降。,方法一:最邻近方法(nearest neighbor matching),命令 set seed 10101(产生随机数种子) attnd re78 treat $x,comsup boot reps($breps) dots logit,方法一:最邻近方法(nearest neighbor matching),方法二:半径匹配法(radius matching),半径匹配法是事先设定半径,找到所有设定半径范围内的单位圆中的控制样本,半径取值为正。随着半径的降低,匹配的要求越来越严。,方法二:半径匹配法(
7、radius matching),命令 set seed 10101 attr re78 treat $x,comsup boot reps($breps) dots logit radius(0.001),方法二:半径匹配法(radius matching),方法三:分层匹配法(stratification matching),内容:分层匹配法是根据估计的倾向得分将全部样本分块,使得每块的平均倾向得分在处理组和控制组中相等。 优点:Cochrane ,Chambers(1965)指出五个区就可以消除95%的与协变量相关的偏差。这个方法考虑到了样本的分层问题或聚类问题。就是假定:每一层内的个体
8、样本具有相关性,而各层之间的样本不具有相关性。 缺点:如果在每个区内找不到对照个体,那么这类个体的信息,会丢弃不用。总体配对的数量减少。,方法三:分层匹配法(stratification matching),命令 set seed 10101 atts re78 treat,pscore(mypscore) blockid(myblock) comsup boot reps($breps) dots,方法三:分层匹配法(stratification matching),方法四:核匹配法(kernel matching),核匹配是构造一个虚拟对象来匹配处理组,构造的原则是对现有的控制变量做权重平
9、均,权重的取值与处理组、控制组PS值差距呈反向相关关系。,方法四:核匹配法(kernel matching),命令 set seed 10101 attk re78 treat $x,comsup boot reps($breps) dots logit,方法四:核匹配法(kernel matching),psmatch2,匹配变量的筛选,1.设定宏变量 设定宏变量x,表示age agesq educ educsq married black hisp re74 re75 re74sq re75sq u74black 命令:global x age agesq educ educsq marr
10、ied black hisp re74 re75 re74sq re75sq u74black,匹配变量的筛选,2.初步设定 logit treat $x,匹配变量的筛选,3.逐步回归 stepwise,pr(0.1):logit treat $x,ps值的计算,psmatch2 treat $x,out(re78) 倾向得分的含义是,在给定X的情况下,样本处理的概率值。利用logit模型估计样本处理的概率值。概率表示如下: P(x)=PrD=1|X=ED|X,匹配处理组,最近邻匹配 命令:psmatch2 treat $x(if soe=1),out(re78) neighbor(2) at
11、e 半径匹配 命令:psmatch2 treat $x,out(re78) ate radius caliper(0.01) 核匹配 命令:psmatch2 treat $x,out(re78) ate kernel,匹配处理组,满足两个假设:A共同支撑假设B平行假设,ATT(平均处理效应的衡量),以半径匹配为例:psmatch2 treat $x,out(re78) ate radius caliper(0.01),1,2,3,1、处理组平均效应(ATT) 2、控制组平均效应(ATU) 3、总体平均效应(ATE),ATT(平均处理效应的衡量),匹配前后变量的差异对比 命令:pstest re
12、78 $x(pstest re78 $x,both graph),匹配前后密度函数图,twoway (kdensity _ps if _treat=1, legend(label(1 Treat) (kdensity _ps if (_wei!=1&_wei!=.), legend(label(2 Control), xtitle(Pscore) title(After Matching),twoway (kdensity _ps if _treat=1, legend(label(1 Treat) (kdensity _ps if _treat=0, legend(label(2 Contr
13、ol),xtitle(Pscore) title(Before Matching),运用bootstrap获得ATT标准误,命令:bootstrap,reps(#):psmatch2 treat $x,out( re78) 在统计分析中,样本较少,采用bootstrap,可以减少小样本偏误。 步骤:首先,从原始样本中可重复地随机抽取n个观察值,得到经验样本;然后采用PSM计算改经验样本的平均处理效果ATT;将第一步和第二步重复进行#次,得出#个ATT值;计算#个ATT值的标准差。,核匹配的Bootstrap检验,爱是什么?一个精灵坐在碧绿的枝叶间沉思。风儿若有若无。一只鸟儿飞过来,停在枝上,望
14、着远处将要成熟的稻田。精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?”“爱。”“为什么?”“它驱赶我的饥饿。”鸟儿啄完稻谷,轻轻梳理着光润的羽毛。“现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。”精灵摘下一片树叶,里面盛了一汪泉水。鸟儿喝完泉水,准备振翅飞去。“请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。“你要去做什么更重要的事吗?我这里又稻谷也有泉水。”“我要去那片开着风信子的山谷,去看那朵风信子。”“为什么?它能驱赶你的饥饿?”“不能。”“它能滋润你的干渴?”“不能。”爱是什么?一个精灵坐在碧绿的枝叶间沉思。风儿若有
15、若无。一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?”“爱。”“为什么?”“它驱赶我的饥饿。”鸟儿啄完稻谷,轻轻梳理着光润的羽毛。“现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。”精灵摘下一片树叶,里面盛了一汪泉水。鸟儿喝完泉水,准备振翅飞去。“请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。“你要去做什么更重要的事吗?我这里又稻谷也有泉水。”“我要去那片开着风信子的山谷,去看那朵风信子。”“为什么?它能驱赶你的饥饿?”“不能。”“它能滋润你的干渴?”“不能。”,其实,世上最
16、温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重,相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一
17、路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪,弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时,你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏识,还是成长岁月无法躲避的经历愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每一个朝夕直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!,