《八年级下数学二元一次方程组知识点梳理及例题解析(8页).doc》由会员分享,可在线阅读,更多相关《八年级下数学二元一次方程组知识点梳理及例题解析(8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-第八章第九章第十章 八年级下数学二元一次方程组知识点梳理及例题解析-第 8 页第十一章 二元一次方程组一、知识回顾1、含有 个未知数,并且含有未知数的项的次数都是 的方程叫做二元一次方程;能使二元一次方程 的两个未知数的值叫做二元一次方程的解。2、把具有 未知数的 方程合在一起就组成了一个二元一次方程组;能使二元一次方程组 的未知数的值叫做二元一次方程组的解。3、解二元一次方程组的基本思想是 ,它有 和 两种方法;把二元一次方程组中一个方程的一个未知数用含 的式子表示出来,再 另一个方程,实现消元进而求得这个二元一次方程组的解,这种方法叫做 ;当两个二元一次方程中同一个未知数的系数 (或 )
2、时,将两个方程的两边分别 (或 ),就能消去这个未知数得到一个一元一次方程,这种方法叫做 。4、列方程组解应用题的步骤可概括为 、 、 、 、 、 、 这七大步骤。5、由 个方程组成,并且方程组中含有 个相同未知数,每个方程中含未知数的项的次数都为 ,这样的方程组叫做三元一次方程组。二元一次方程组的实际应用列方程组解应用题的常见类型主要有:. 行程问题.包括追及问题和相遇问题,基本等量关系为:路程速度时间;. 工程问题.一般分为两类,一类是一般的工程问题,一类是工作总量为1的工程问题.基本等量关系为:工作量工作效率 工作时间;3. 和差倍分问题.基本等量关系为:较大量较小量多余量,总量倍数 1
3、倍量;4. 航速问题.此类问题分为水中航行和风中航行两类,基本关系式为:顺流(风):航速静水(无风)中的速度水(风)速逆流(风):航速静水(无风)中的速度水(风)速5. 几何问题、年龄问题和商品销售问题等.二元一次方程组是中考重点考查的内容之一,主要有以下几个方面:(1) 从实际数学问题中构造一次方程组,解决有关问题;(2) 能从图表中获得有关信息,列方程组解决问题.【例2】 解方程组【例3】 某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩.游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人;而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,问晚会上男、女生各有几人
4、?【例4】 解方程组 第四节、思维点拨【例1】 小红到邮局寄挂号信,需要邮资元角. 小红有票额为角和角的邮票若干张,问各需多少张这两种面额的邮票?【例2】 小聪全家外出旅游,估计需要胶卷底片张. 商店里有两种型号的胶卷:型每卷张底片,型每卷张底片. 小聪一共买了卷胶卷,刚好有张底片. 求两种胶卷的数量.【例】用加减法解方程组 【例4】用代入法解方程组 【例5】用代入法解方程组【例6】 甲、乙两厂,上月原计划共生产机床90台,结果甲厂完成了计划的112,乙厂完成了计划的110,两厂共生产机床100台,求上月两厂各超额生产了多少台机床?【例7】 某学校组织学生到100千米以外的夏令营去,汽车只能坐
5、一半人,另一半人步行.先坐车的人在途中某处下车步行,汽车则立即回去接先步行的一半人.已知步行每小时走4千米,汽车每小时走20千米(不计上下车的时间),要使大家下午5点同时到达,问需何时出发.【例8】 小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25的教育储蓄,另一种是年利率为2.25的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税利息金额20%,教育储蓄没有利息所得税)【例1】 已知方程组的解x,y满足方程5x-y=3,求k的值.【例2】某种商品价格为每件元,某人身边只带有元和元两种面值的人民币各若干张
6、,买了一件这种商品. 若无需找零钱,则付款方式有哪几种(指付出元和元钱的张数)?哪种付款方式付出的张数最少?【例3】某中学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了训练:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生.(1) 求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2) 检查中发现,紧急情况时因学生拥挤,出门的效率将降低20.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教
7、室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.【例4】某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?【例5】 用如图中的长方形和正方形纸板做侧面和底面,做成如图的竖式和横式两种无盖纸盒. 现在仓库里有张正方形纸板和000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?第六节、本章训练基础训练题一、填空题(每题7分,共35分) 1.一个两位数的数字之和是7,这个两位数减去27,它的十位和个位上的数字就交换了位置,则这个两位数是 . 2. 已知甲、乙两人从相距km的两地同时
8、相向而行,1h相遇.如果甲比乙先走h,那么在乙出发后h与甲相遇.设甲、乙两人速度分别为xkm/h、ykm/h,则x ,y . 3. 甲、乙二人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就能追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,两人每秒钟各跑的米数是 . 4.一队工人制造某种工件,若平均每人一天做5件,全队一天就超额30件;若平均每人一天做4件,全队一天就比定额少完成20件.若设这队工人有x人,全队每天的数额为y件,则依题意可得方程组 . 5.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为7
9、4分,则他答对了 . 二、选择题(每题7分,共35分) 1.一个两位数的十位数字比个位数字小2,且能被3整除,若将十位数字与个位数字交换又能被5整除,这个两位数是( ). A. 53 B. 57 C. 35 D. 75 2.甲、乙两车相距150km,两车同时出发,同向而行,甲车4h可追上乙车;相向而行,1.5h后两车相遇.设甲、乙两车的平均速度分别为xkm/h、ykm/h.以下方程组正确的是( ). 3.甲、乙二人从同一地点出发,同向而行,甲骑车乙步行.若乙先行12km,那么甲1小时追上乙;如果乙先走1小时,甲只用小时就追上乙,则乙的速度是( )km/h. A. 6 B. 12 C. 18 D
10、. 36 4.一艘船在一条河上的顺流速度是逆流速度的2倍,则船在静水中的速度与水流的速度之比为( ). A. 4:3 B. 3:2 C. 2:1 D. 3:1 三、列方程组解应用题(每题15分,共30分) 1.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件? 2. 师傅对徒弟说“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的人了”.问这位师傅与徒弟现在的年龄各是多少岁?提高训练题1. 甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小
11、时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度.2. 2. 小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是你能由此求出原来的方程组吗?3. 若是关于x,y的二元一次方程3x-y+a=0的一个解,求a的值.4.已知方程组其中正确的说法是()A只有(1)、(3)是二元一次方程组;B只有(1)、(4)是二元一次方程组;C只有(2)、(3)是二元一次方程组;D只有(2)不是二元一次方程组强化训练题1. 解关于x,y的方程组,并求当解满足方程4x3y21时的k值2. 有两个长方形,第一个长方形的长与宽之比
12、为54,第二个长方形的长与宽之比为32,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.3.甲乙两人做加法,甲在其中一个数后面多写了一个0,得和为2342,乙在同一个加数后面少写了一个0,得和为65,你能求出原来的两个加数吗?4.某校2006年初一年级和高一年级招生总数为500人,计划2007年秋季初一年级招生人数增加20,高一年级招生人数增加25,这样2007年秋季初一年级、高一年级招生总数比2006年将增加21,求2007年秋季初一、高一年级的招生人数各是多少?综合训练题一、精心选一选(每题7分,共35分) 1.
13、 方程组的解是( ). 2. 在一次小组竞赛中,遇到了这样的情况:如果每组7人,就会余3人;如果每组8人,就会少5人.问竞赛人数和小组的组数各是多少?若设人数为x,组数为y,根据题意,可列方程组(). 3. 买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%,设买甲种水x桶、乙种水y桶,则所列方程组中正确的是(). 4. 一个两位数被9除余2,如果把它的十位与个位交换位置,则所得的两位数被9除余5,设个位数字为x,十位数字为y,则下面正确的是( ).(以下选项中k1、k2都为整数) 5. 用面值l元的纸币换成面值为l角或5角的硬币,则换法共有
14、( )种.A. 4 B. 3 C. 2 D. 1二、用心填一填(每题7分,共35分) 1. 一艘轮船顺流航行,每小时行20千米;逆流航行每小时行16千米.则轮船在静水中的速度为_,水流速度为_. 2. 一队工人制造某种工件,若平均每人一天做5件,那么全队一天就比定额少完成30件;若平均每人一天做7件,那么全队一天就超额20件. 则这队工人有_人,全队每天制造的工件数额为_件. 3. 已知甲、乙两人从相距18千米的两地同时相向而行,1小时相遇.再同向而行如果甲比乙先走小时,那么在乙出发后小时乙追上甲.设甲、乙两人速度分别为x千米/时、y千米/时,则x_,y_. 4. 甲、乙二人练习赛跑,如果甲让
15、乙先跑10米,那么甲跑5秒钟就能追上乙;如果乙让甲先跑2秒钟,那么乙跑6秒钟落后于甲28米,甲每秒钟跑_,乙每秒钟跑_. 5. 小强拿了十元钱去商场购买笔和圆规.售货员告诉他:这10元钱可以买一个圆规和三支笔或买两个圆规和一支笔,现在小强只想买一个圆规和一支笔,那么售货员应该找给他_元. 三、耐心做一做(每题10分,共30分) 1. 某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟;如果他以每小时75千米的高速行驶,则可提前24分钟到达乙地,求他以每小时多少千米的速度行驶可准时到达. 2. 一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元.若只选一个组单独完成,从节约开支角度考虑,这家商店应选择哪个组? 3. 参考消息报道,巴西医生马廷恩经过10年研究得出结论:卷入腐败行列的人容易得癌症,心肌梗塞,脑溢血,心脏病等病,如果将贪污受贿的580名官员和600名廉洁官员进行比较,可发现,后者的健康人数比前者的健康人数多272人,两者患病或患病致死者共444人,试问贪污受贿的官员和廉洁官员中的健康人数各自占统计人数的百分之几?