《量子力学作业答案(7页).doc》由会员分享,可在线阅读,更多相关《量子力学作业答案(7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-量子力学作业答案-第 7 页第一章 量子理论基础11 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长与温度T成反比,即T=b(常量);并近似计算b的数值,准确到二位有效数字。解 根据普朗克的黑体辐射公式, (1)以及 , (2), (3)有这里的的物理意义是黑体内波长介于与+d之间的辐射能量密度。本题关注的是取何值时,取得极大值,因此,就得要求 对的一阶导数为零,由此可求得相应的的值,记作。但要注意的是,还需要验证对的二阶导数在处的取值是否小于零,如果小于零,那么前面求得的就是要求的,具体如下:如果令x= ,则上述方程为这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,
2、此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有把x以及三个物理常量代入到上式便知14 利用玻尔索末菲的量子化条件,求:(1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子轨道的可能半径。已知外磁场H=10T,玻尔磁子,试计算运能的量子化间隔E,并与T=4K及T=100K的热运动能量相比较。解 玻尔索末菲的量子化条件为其中q是微观粒子的一个广义坐标,p是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n是正整数。(1)设一维谐振子的劲度常数为k,谐振子质量为,于是有这样,便有这里的正负号分别表示谐振子沿着正方向运动和沿着
3、负方向运动,一正一负正好表示一个来回,运动了一圈。此外,根据可解出 这表示谐振子的正负方向的最大位移。这样,根据玻尔索末菲的量子化条件,有为了积分上述方程的左边,作以下变量代换;这样,便有这时,令上式左边的积分为A,此外再构造一个积分这样,便有 (1)这里 =2,这样,就有 (2)根据式(1)和(2),便有这样,便有其中最后,对此解作一点讨论。首先,注意到谐振子的能量被量子化了;其次,这量子化的能量是等间隔分布的。(2)当电子在均匀磁场中作圆周运动时,有这时,玻尔索末菲的量子化条件就为又因为动能耐,所以,有其中,是玻尔磁子,这样,发现量子化的能量也是等间隔的,而且具体到本题,有根据动能与温度的
4、关系式以及可知,当温度T=4K时,当温度T=100K时,显然,两种情况下的热运动所对应的能量要大于前面的量子化的能量的间隔。2.2 由下列定态波函数计算几率流密度: 从所得结果说明表示向外传播的球面波,表示向内(即向原点) 传播的球面波。 解:在球坐标中 同向。表示向外传播的球面波。 可见,反向。表示向内(即向原点) 传播的球面波。补充:设,粒子的位置几率分布如何?这个波函数能否归一化? 波函数不能按方式归一化。 其相对位置几率分布函数为 表示粒子在空间各处出现的几率相同。2.3 一粒子在一维势场中运动,求粒子的能级和对应的波函数。解:无关,是定态问题。其定态S方程 在各区域的具体形式为由于(
5、1)、(3)方程中,由于,要等式成立,必须即粒子不能运动到势阱以外的地方去。 方程(2)可变为 令,得 其解为 根据波函数的标准条件确定系数A,B,由连续性条件,得 由归一化条件得 由 可见E是量子化的。对应于的归一化的定态波函数为2.4. 证明(2.6-14)式中的归一化常数是 证: (2.6-14) 由归一化,得 归一化常数 #2.5 求一维谐振子处在激发态时几率最大的位置。 解: 令,得 由的表达式可知,时,。显然不是最大几率的位置。 可见是所求几率最大的位置。 #3.2.氢原子处在基态,求: (1)r的平均值; (2)势能的平均值; (3)最可几半径; (4)动能的平均值; (5)动量
6、的几率分布函数。 解:(1) (3)电子出现在r+dr球壳内出现的几率为 令 当为几率最小位置 是最可几半径。 (4) (5) 动量几率分布函数3.5 一刚性转子转动惯量为I,它的能量的经典表示式是,L为角动量,求与此对应的量子体系在下列情况下的定态能量及波函数:(1) 转子绕一固定轴转动:(2) 转子绕一固定点转动:解:(1)设该固定轴沿Z轴方向,则有 哈米顿算符 其本征方程为 (无关,属定态问题) 令 ,则 取其解为 (可正可负可为零)由波函数的单值性,应有 即 m= 0,1,2,转子的定态能量为 (m= 0,1,2,)可见能量只能取一系列分立值,构成分立谱。 定态波函数为 A为归一化常数
7、,由归一化条件 转子的归一化波函数为 综上所述,除m=0外,能级是二重简并的。 (2)取固定点为坐标原点,则转子的哈米顿算符为 无关,属定态问题,其本征方程为 (式中设为的本征函数,为其本征值) 令 ,则有 此即为角动量的本征方程,其本征值为 其波函数为球谐函数 转子的定态能量为 可见,能量是分立的,且是重简并的。3.9.设氢原子处于状态求氢原子能量、角动量平方及角动量Z分量的可能值,这些可能值出现的几率和这些力学量的平均值。 解:在此能量中,氢原子能量有确定值 角动量平方有确定值为 角动量Z分量的可能值为 其相应的几率分别为 其平均值为3.10一粒子在硬壁球形空腔中运动,势能为求粒子的能级和定态函数。 解:据题意,在的区域,所以粒子不可能运动到这一区域,即在这区域粒子的波函数 由于在的区域内,。只求角动量为零的情况,即,这时在各个方向发现粒子的几率是相同的。即粒子的几率分布与角度无关,是各向同性的,因此,粒子的波函数只与有关,而与无关。设为,则粒子的能量的本征方程为 令 ,得其通解为波函数的有限性条件知, 有限,则 A = 0 由波函数的连续性条件,有其中B为归一化,由归一化条件得 归一化的波函数