导数含参数取值范围分类讨论题型总结与方法归纳(18页).doc

上传人:1595****071 文档编号:37144396 上传时间:2022-08-30 格式:DOC 页数:18 大小:2.06MB
返回 下载 相关 举报
导数含参数取值范围分类讨论题型总结与方法归纳(18页).doc_第1页
第1页 / 共18页
导数含参数取值范围分类讨论题型总结与方法归纳(18页).doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《导数含参数取值范围分类讨论题型总结与方法归纳(18页).doc》由会员分享,可在线阅读,更多相关《导数含参数取值范围分类讨论题型总结与方法归纳(18页).doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-导数含参数取值范围分类讨论题型总结与方法归纳-第 18 页导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。 已知函数(a0),求函数的单调区间例1 已知函数(a0)求函数的单调区间例3已知函数,其中。()当时,求曲线在点处的切线方程;()当时,求函数的单调区间与极值。解:()当时,曲线在点处的切线方程为。()由于,所以 ,由,得。这两个实根都在定义域R内,但不知它们之间 的大小。因此,需对参数的取值分和两种

2、情况进行讨论。 (1)当时,则。易得在区间,内为减函数,在区间为增函数。故函数在处取得极小值; 函数在处取得极大值。(1) 当时,则。易得在区间,内为增函数,在区间为减函数。故函数在处取得极小值;函数在处取得极大值。 以上三点即为含参数导数问题的三个基本讨论点,在求解有关含参数的导数问题时,可按上述三点的顺序对参数进行讨论。因此,对含参数的导数问题的讨论,还是有一定的规律可循的。当然,在具体解题中,可能要讨论其中的两点或三点,这时的讨论就更复杂一些了,需要灵活把握。 (区间确定零点不确定的典例)例4 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3a5)的管理费

3、,预计当每件产品的售价为x元(9x11)时,一年的销售量为(12-x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).解 (1)分公司一年的利润L(万元)与售价x的函数关系式为:L=(x-3-a)(12-x)2,x9,11. (2)L(x)=(12-x)2-2(x-3-a)(12-x) =(12-x)(18+2a-3x).X=12y 令L=0得x=6+a或x=12(不合题意,舍去). 3a5,86+a.912x 在x=6+a两侧L的值由正变负.0 所以当86+a9即3a时, Lmax=

4、L(9)=(9-3-a)(12-9)2=9(6-a). 当96+a即a5时,Lmax=L(6+a)=(6+a-3-a)12-(6+a)2=4(3-a)3.所以Q(a)=答 若3a,则当每件售价为9元时,分公司一年的利润L最大,最大值Q(a)=9(6-a)(万元);若a5,则当每件售价为(6+a)元时,分公司一年的利润L最大,最大值Q(a)=4(3-a)3(万元).(导函数零点确定,但区间端点不确定引起讨论的典例)例2、已知 ().求函数的单调区间; ().求函数在上的最小值; ()对一切的,恒成立,求实数的取值范围. 解:() ()()0tt+2,t无解; ()0tt+2,即0t0),求函数的

5、单调区间 例3 已知是实数,函数()求函数的单调区间;()设为在区间上的最小值。 ()写出的表达式; ()求的取值范围,使得。解:()函数的定义域为,由得。考虑是否落在导函数的定义域内,需对参数的取值分及两种情况进行讨论。(1) 当时,则在上恒成立,所以的单调递增区间为。(2) 当时,由,得;由,得。因此,当时,的单调递减区间为,的单调递增区间为。()()由第()问的结论可知:(1) 当时,在上单调递增,从而在上单调递增,所以。(2) 当时,在上单调递减,在上单调递增,所以: 当,即时,在上单调递减,在上单调递增,所以。 当,即时,在上单调递减,所以。综上所述,()令。若,无解;若,由解得;

6、若,由解得。综上所述,的取值范围为。三.求导后,因导函数为零是否有实根(或导函数的分子能否分解因式)不确定,而引起的讨论。例1已知函数 求函数的单调区间例2已知函数求函数的单调区间 例3 设,函数,试讨论函数的单调性。解:考虑导函数是否有实根,从而需要对参数的取值进行讨论。(一)若,则。由于当时,无实根,而当时,有实根,因此,对参数分和两种情况讨论。(1) 当时,在上恒成立,所以函数在上为增函数;(2) 当时,。由,得,因为,所以。由,得;由,得。因此,当时,函数在上为减函数,在上为增函数。(二)若,则。由于当时,无实根,而当时,有实根,因此,对参数分和两种情况讨论。(1) 当时,在上恒成立,

7、所以函数在上为减函数;(2) 当时,。由,得;由,得。因此,当时,函数在上为减函数,在上为增函数。综上所述:(1) 当时,函数在上为减函数,在上为增函数,在上为减函数。(2) 当时,函数在上为增函数,在上为减函数。(3) 当时,函数在上为增函数,在上为减函数,在上为增函数。 19设a0,讨论函数f(x)=lnx+a(1-a)x2-2(1-a)x的单调性。解:函数的定义域为当的判别式当有两个零点,(1)且当内为增函数;当内为减函数;当内为增函数;当内为增函数;当 时,由 0 0是增函数,在上0是增函数。所以函数在x=a时,所以函数在x=a时,因对有恒成立, 求实数的取值范围.极值点 指定区间端点

8、位置关系不确定引起讨论。讨论如下: a0 当两个极值点都在指定区间内时。即03a3,也就是0a0时为什么分为0a0是增函数,在上0是增函数。所以函数在x=a时,所以函数在x=a时,有恒成立,等价于 解得即0a1 当两个极值点有一个在指定区间内时。即03时,也就是10时为什么分为0a0是增函数,在上3时, (当a0时为什么分为0a0是增函数, 与 矛盾。 综上:对有恒成立时,实数的取值范围是.例4设函数,其中,求函数的极值点。解:由题意可得的定义域为,的分母在定义域上恒为正,方程是否有实根,需要对参数的取值进行讨论。(1)当,即时,方程无实根或只有唯一根,所以,在上恒成立,则在上恒成立,所以函数

9、在上单调递增,从而函数在上无极值点。(2)当,即时,方程,即有两个不相等的实根:这两个根是否都在定义域内呢?又需要对参数的取值分情况作如下讨论:()当时,所以。此时,与随的变化情况如下表:0递减极小值递增由此表可知:当时,有唯一极小值点。()当时,所以。此时,与随的变化情况如下表:递增极大值递减极小值递增由此表可知:当时,有一个极大值点和一个极小值点。综上所述:(1) 当时,有唯一极小值点;(2) 当时,有一个极大值点和一个极小值点;(3) 当时,无极值点。从以上诸例不难看出,在对含参数的导数问题的讨论时,只要把握以上三个基本讨论点,那么讨论就有了方向和切入点,即使问题较为复杂,讨论起来也会得

10、心应手、层次分明,从而使问题迎刃而解。 (19)()小问5分,()小问7分.)已知函数(其中常数a,bR),是奇函数.()求的表达式;()讨论的单调性,并求在区间1,2上的最大值和最小值.(21)已知函数(I)当时,求曲线在点处的切线方程;(II)当时,讨论的单调性.解:() 当 所以 因此, 即 曲线又所以曲线 ()因为 ,所以 ,令 (1)当所以,当,函数单调递减;当时,此时单调递 (2)当 即,解得当时,恒成立,此时,函数在(0,+)上单调递减;当时,单调递减;时,单调递增;,此时,函数单调递减;当时,由于时,此时,函数单调递减;时,此时,函数单调递增。综上所述:当时,函数在(,)上单调

11、递减;函数在(,)上单调递增;当时,函数在(0,+)上单调递减;当时,函数在(0,1)上单调递减;函数在上单调递增;函数上单调递减, (22)已知函数.()当时,讨论的单调性;()设当时,若对任意,存在,使,求实数取值范围.解:()因为,所以 ,令 , 当时,恒成立,此时,函数 在上单调递减; 当, 时,此时,函数单调递减; 时,此时,函数 单调递增; 时,此时,函数单调递减; 当时,由于, ,,此时,函数 单调递减;时,此时,函数单调递增.综上所述:0()因为a=,由()知,=1,=3,当时,函数单调递减;当时,函数单调递增,所以在(0,2)上的最小值为。由于“对任意,存在,使”等价于“在上

12、的最小值不大于在(0,2)上的最小值”(*)又=,所以当时,因为,此时与(*)矛盾当时,因为,同样与(*)矛盾当时,因为,解不等式8-4b,可得综上,b的取值范围是。(21)已知函数. ()讨论函数的单调性; ()设,证明:对任意,.解:() f(x)的定义域为(0,+),.当a0时,0,故f(x)在(0,+)单调增加;当a1时,0, 故f(x)在(0,+)单调减少;当1a0时,令0,解得x=.当x(0, )时, 0;x(,+)时,0, 故f(x)在(0, )单调增加,在(,+)单调减少.()不妨假设x1x2.由于a2,故f(x)在(0,+)单调减少.所以等价于4x14x2,即f(x2)+ 4

13、x2f(x1)+ 4x1.令g(x)=f(x)+4x,则+4于是0.从而g(x)在(0,+)单调减少,故g(x1) g(x2),即f(x1)+ 4x1f(x2)+ 4x2,故对任意x1,x2(0,+) ,.(21)已知函数(I) 讨论函数的单调性;(II) (II)设.如果对任意,求的取值范围。解:()的定义域为(0,+). .当时,0,故在(0,+)单调增加;当时,0,故在(0,+)单调减少;当-10时,令=0,解得.则当时,0;时,0.故在单调增加,在单调减少.()不妨假设,而-1,由()知在(0,+)单调减少,从而等价于 , 令,则等价于在(0,+)单调减少,即 . 从而 故a的取值范围

14、为(-,-2. (18)已知函数()=In(1+)-+(0)。()当=2时,求曲线=()在点(1,(1)处的切线方程;()求()的单调区间。解:(I)当时,由于, 所以曲线在点处的切线方程为 即 (II),.当时,. 所以,在区间上,;在区间上,.故得单调递增区间是,单调递减区间是.当时,由,得,所以,在区间和上,;在区间上,故得单调递增区间是和,单调递减区间是.当时, 故得单调递增区间是.当时,得,.所以没在区间和上,;在区间上, 故得单调递增区间是和,单调递减区间是20、(本小题满分16分)设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有0,使得,则称函数具有性质。

15、(1)设函数,其中为实数。(i)求证:函数具有性质; (ii)求函数的单调区间。(2)已知函数具有性质。给定设为实数,且,若|0,所以对任意的都有,在上递增。又。当时,且,综合以上讨论,得:所求的取值范围是(0,1)。(方法二)由题设知,的导函数,其中函数对于任意的都成立。所以,当时,从而在区间上单调递增。当时,有,得,同理可得,所以由的单调性知、,从而有|,符合题设。当时,于是由及的单调性知,所以|,与题设不符。当时,同理可得,进而得|,与题设不符。因此综合、得所求的的取值范围是(0,1)。待研究的以下问题在求函数的单调区间时涉及的分类讨论问题;在求函数的极值与最值问题引出分类讨论问题;在涉

16、及函数的零点时引起的分类讨论问题;参考资料:导数的应用与分类讨论【例】 设函数f(x)=2x3-3(a+1)x2+6ax+8,其中aR. ()若f(x)在x=3处取得极值,求常数a的值; ()若f(x)在(-,)上为增函数,求a的取值范围. 解: ()f (x)=6x2-6(a+1)x+6a=6(x-a)(x-1). f(x)在x=3处取得极值, f ()(-a)=0,a=3,检验知成立. ()由f (x)=6(x-a)(x-1)=0得x1=a或x2=1. 若a0,所以f (x)在(,a)和(,)上为增函数,而f(x)在(,)上为增函数,所以a0,所以f (x)在(,1)和(a,)上为增函数,

17、f(x)在(,)上也为增函数. 综上,所求a的取值范围为,). 【点评】 ()中对a的值进行分类讨论,当a0,当x变化时,函数递增与递减及极值情况如下表:若ax0时, h(x)0;当xx0时,h(x)0,且b1”是不等式成立的必要条件. 下面在a0,且0b1的条件下求a与b所满足的关系式及b的取值范围. x2+1ax+b x2-ax+(1-b)0,对任意x 0,)成立的充要条件是x2-ax+(1-b)在0,)上的最小值b- 0,即a2 令S(x)=ax+b- ,则对于任意x 0,)不等式ax+b 恒成立 S(x)0. 由(x)=a- =0得x=a-3,则当0xa-3时,(x)a-3时,(x)0,所以当x=a-3时,(x)取得最小值.因此(x)的充要条件是(a-3)0,即aa-3+b- 0,解得a . 故a、b所满足的关系式为 a2 . 解不等式 2 ,得 b ,这就是所求的b的取值范围. 【点评】 在()中判断“x0是h(x)惟一的极值点”,在()中求(x)的最小值,都用到了分类讨论.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁