《八年级数学上册_整式的乘除练习题华东师大版(8页).doc》由会员分享,可在线阅读,更多相关《八年级数学上册_整式的乘除练习题华东师大版(8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-八年级数学上册_整式的乘除练习题华东师大版-第 8 页八年级数学上册整式的乘除练习幂的运算习题精选一、选择题:1下列计算中,错误的是( )Amnm2n+1 = m3n+1 B(am1)2 = a 2m2C(a2b)n = a2nbnD(3x2)3 = 9x6 2若xa = 3,xb = 5,则xa+b的值为( )A8B15 C35D533计算(c2)n(cn+1)2等于( )Ac4n+2BcCcDc3n+44与( 2a2)35的值相等的是( )A 25a30 B 215a 30 C( 2a2)15 D( 2a)305下列计算正确的是( )A(xy)3 = xy3 B(2xy)3 = 6x3y
2、3C(3x2)3 = 27x5D(a2b)n = a2nbn6下列各式错误的是( )A(23)4 = 212 B( 2a)3 = 8a3C(2mn2)4 = 16m4n8 D(3ab)2 = 6a2b27下列各式计算中,错误的是( )A(m6)6 = m36 B(a4)m = (a 2m)2Cx2n = (xn)2 Dx2n = (x2)n二、解答题:1已知32n+1+32n = 324,试求n的值2已知 2m = 3,4n = 2,8k = 5,求 8m+2n+k的值3计算:x2(x3)24 4如果am = 5,an = 7,求a 2m+n的值答案:一、选择题:1、D 说明:mnm2n+1
3、= mn+2n+1 = m3n+1,A中计算正确;(am1)2 = a2(m1) = a 2m2,B中计算正确; (a2b)n = (a2)nbn = a2nbn,C中计算正确;(3x2)3 = (3)3(x2)3 = 27x6,D中计算错误;所以答案为D2、B 说明:因为xa = 3,xb = 5,所以xa+b = xaxb = 35 = 15,答案为B3、A 说明:(c2)n(cn+1)2 = c2nc2(n+1) = c2nc2n+2 = c2n+2n+2 = c4n+2,所以答案为A4、C 说明:( 2a2)35 = ( 2a2)35 = ( 2a2)15,所以答案为C5、D 说明:(
4、xy)3 = x3y3,A错;(2xy)3 = 23x3y3 = 8x3y3,B错;(3x2)3 = (3)3(x2)3 = 27x6,C错;(a2b)n = (a2)nbn = a2nbn,D正确,答案为D6、C 说明:(23)4 = 234 = 212,A中式子正确;( 2a)3 = (2) 3a3 = 8a3,B中式子正确;(3ab)2 = 32a2b2 = 9a2b2,C中式子错误;(2mn2)4 = 24m4(n2)4 = 16m4n8,D中式子正确,所以答案为C7、D 说明:(m6)6 = m66 = m36,A计算正确;(a4)m = a 4m,(a 2m)2 = a 4m,B计
5、算正确;(xn)2 = x2n,C计算正确;当n为偶数时,(x2)n = (x2)n = x2n;当n为奇数时,(x2)n = x2n,所以D不正确,答案为D二、解答题:1解:由32n+1+32n = 324得332n+32n = 324,即432n = 324,32n = 81 = 34,2n = 4,n = 22解析:因为 2m = 3,4n = 2,8k = 5所以 8m+2n+k = 8m82n8k = (23)m(82)n8k = 23m(43)n8k = ( 2m)3(4n)38k = 33235 = 2785 = 10803答案:x32解:x2(x3)24 = (x2x32)4
6、= (x2x6)4 = (x2+6)4 = (x8)4 = x84 = x324答案:a 2m+n = 175解:因为am = 5,an = 7,所以a 2m+n = a 2man = (am)2an = (5)27 = 257 = 175整式的乘法习题精选选择题:1对于式子(x2)n xn+3(x0),以下判断正确的是( )Ax0时其值为正Bxx35的解集为x9(x2)(x+3)的正整数解答案:x = 1、2、3、4说明:原不等式变形为9x2169x2+9x54,9x38,xN BMN CMN D不能确定7对于任何整数m,多项式( 4m+5)29都能( )A被8整除 B被m整除C被(m1)整
7、除 D被(2n1)整除8将3x2n6xn分解因式,结果是( )A3xn(xn+2) B3(x2n+2xn) C3xn(x2+2) D3(x2n2xn) 9下列变形中,是正确的因式分解的是( )A 0.09m2 n2 = ( 0.03m+ )( 0.03m)Bx210 = x291 = (x+3)(x3)1Cx4x2 = (x2+x)(x2x) D(x+a)2(xa)2 = 4ax10多项式(x+yz)(xy+z)(y+zx)(zxy)的公因式是( )Ax+yz Bxy+z Cy+zx D不存在11已知x为任意有理数,则多项式x1x2的值( )A一定为负数B不可能为正数C一定为正数D可能为正数或
8、负数或零二、解答题:分解因式:(1)(ab+b)2(a+b)2(2)(a2x2)24ax(xa)2(3)7xn+114xn+7xn1(n为不小于1的整数)答案:一、选择题:1B 说明:右边进行整式乘法后得16x481 = (2x)481,所以n应为4,答案为B2B 说明:因为9x212xy+m是两数和的平方式,所以可设9x212xy+m = (ax+by)2,则有9x212xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = 12,b2y2 = m;得到a = 3,b = 2;或a = 3,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B3D 说明
9、:先运用完全平方公式,a4 2a2b2+b4 = (a2b2)2,再运用两数和的平方公式,两数分别是a2、b2,则有(a2b2)2 = (a+b)2(ab)2,在这里,注意因式分解要分解到不能分解为止;答案为D4C 说明:(a+b)24(a2b2)+4(ab)2 = (a+b)22(a+b)2(ab)+2(ab)2 = a+b2(ab)2 = (3ba)2;所以答案为C5B 说明:()2001+()2000 = ()2000()+1 = ()2000 = ()2001 = ()2001,所以答案为B6B 说明:因为MN = x2+y22xy = (xy)20,所以MN7A 说明:( 4m+5)
10、29 = ( 4m+5+3)( 4m+53) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1)8A9D 说明:选项A,0.09 = 0.32,则 0.09m2 n2 = ( 0.3m+n)( 0.3mn),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2x)可继续分解为x2(x+1)(x1);所以答案为D10A 说明:本题的关键是符号的变化:zxy = (x+yz),而xy+zy+zx,同时xy+z(y+zx),所以公因式为x+yz11B 说明:x1x2 = (1x+x2) = (1x)20,即多项式x1x2的值为非正数,正确答案应该是B二、解答题:(1) 答案:a(b1)(ab+2b+a)说明:(ab+b)2(a+b)2 = (ab+b+a+b)(ab+bab) = (ab+2b+a)(aba) = a(b1)(ab+2b+a)(2) 答案:(xa)4说明:(a2x2)24ax(xa)2 = (a+x)(ax)24ax(xa)2 = (a+x)2(ax)24ax(xa)2 = (xa)2(a+x)24ax = (xa)2(a2+2ax+x24ax) = (xa)2(xa)2 = (xa)4(3) 答案:7xn1(x1)2说明:原式 = 7xn1 x27xn1 2x+7xn1 = 7xn1(x22x+1) = 7xn1(x1)2