《函数奇偶性的归纳总结(7页).doc》由会员分享,可在线阅读,更多相关《函数奇偶性的归纳总结(7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-函数奇偶性的归纳总结-第 7 页函数的奇偶性的归纳总结考纲要求:了解函数的奇偶性的概念,掌握判断一些简单函数的奇偶性的方法。教学目标:1、理解函数奇偶性的概念;2、掌握判断函数的奇偶性的类型和方法;3、掌握函数的奇偶性应用的类型和方法;4、培养学生观察和归纳的能力,培养学生勇于探索创新的精神。教学重点:1、理解奇偶函数的定义;2、掌握判断函数的奇偶性的类型和方法,并探索其中简单的规律。教学难点:1、对奇偶性定义的理解;2、较复杂函数奇偶性的判断及函数奇偶性的某些应用。教学过程:一、知识要点:1、函数奇偶性的概念一般地,对于函数,如果对于函数定义域内任意一个,都有,那么函数就叫做偶函数。一般地
2、,对于函数,如果对于函数定义域内任意一个,都有,那么函数就叫做奇函数。理解:(1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质;(2)定义域关于原点对称是函数具有奇偶性的必要条件。2、按奇偶性分类,函数可分为四类:奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数.3、奇偶函数的图象:奇函数图象关于原点成中心对称的函数,偶函数图象关于y轴对称的函数。4、函数奇偶性的性质:具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。常用的结论:
3、若f(x)是奇函数,且x在0处有定义,则f(0)0。奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数f(x)在区间a,b(0ab)上单调递增(减),则f(x)在区间b,a上也是单调递增(减);偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反,最值相同。偶函数f(x)在区间a,b(0ab)上单调递增(减),则f(x)在区间b,a上单调递减(增)任意定义在R上的函数f(x)都可以唯一地表示成一个奇函数与一个偶函数的和。若函数g(x),f(x),fg(x)的定义域都是关于原点对称的,则u=g(x),y=f(u)都是奇函数时,y=fg(x)是奇函数;u=g(x),
4、y=f(u)都是偶函数,或者一奇一偶时,y= fg(x)是偶函数。 复合函数的奇偶性特点是:“内偶则偶,内奇同外”.5、判断函数奇偶性的方法:、定义法:对于函数的定义域内任意一个x,都有或或函数f(x)是偶函数; 对于函数的定义域内任意一个x,都有或或 函数f(x)是奇函数; 判断函数奇偶性的步骤:、判断定义域是否关于原点对称;、比较与的关系。、扣定义,下结论。、图象法:图象关于原点成中心对称的函数是奇函数;图象关于y轴对称的函数是偶函数。,、运算法:几个与函数奇偶性相关的结论:奇函数+奇函数=奇函数;偶函数+偶函数=偶函数;奇函数奇函数=偶函数;奇函数偶函数=奇函数。若为偶函数,则。二、典例
5、分析1、给出函数解析式判断其奇偶性:分析:判断函数的奇偶性,先要求定义域,定义域不关于原点对称的是非奇非偶函数,若定义域关于原点对称,再看f(x)与f(x)的关系.【例1】 判断下列函数的奇偶性:(1). (2) . 解:函数的定义域是, 为偶函数。(法2图象法):画出函数的图象如下:由函数的图象可知,为偶函数。说明:解答题要用定义法判断函数的奇偶性,选择题、填空题可用图象法判断函数的奇偶性。(2) . 解:由 ,得x(,3(3,+).定义域不关于原点对称,故是非奇非偶函数.【例2】 判断下列函数的奇偶性:(1). (2) . (3). 。解: (1).由,解得 定义域为2x0或0x2,则.为
6、奇函数.说明:对于给出函数解析式较复杂时,要在函数的定义域不变情况下,先将函数解析式变形化简,然后再进行判断。 (2) .函数定义域为R, 函数为偶函数。(3). 由,解得 , 函数定义域为,又,且,所以 既是奇函数又是偶函数。【例3】 判断下列函数的奇偶性:(1). ;(2). 解:(1) . 定义域为R, f(x)=f(x),所以f(x)为奇函数。说明:给出函数解析式判断其奇偶性,一般是直接找与关系,但当直接找与关系困难时,可用定义的变形式:函数f(x)是偶函数; 函数f(x)是奇函数。 (2) .函数的定义域为R,当时,当时,当时,综上可知,对于任意的实数x,都有,所以函数为奇函数。说明
7、:分段函数判断奇偶性,必分段来判断,只有各段为同一结果时函数才有奇偶性。分段函数判断奇偶性,也可用图象法。2、抽象函数判断其奇偶性:【例4】 已知函数对任意的非零实数恒有判断函数的奇偶性。解:函数的定义域为,令,得,令,则取,得故函数为偶函数。3、函数奇偶性的应用:(1) . 求字母的值:【例5】已知函数是奇函数,又,求的值.解:由得,。又得,而得,解得。又,或.若,则,应舍去;若,则b=1Z.说明:本题从函数的奇偶性入手,利用函数的思想(建立方程或不等式,组成混合组),使问题得解.有时也可用特殊值,如 f(1)=f(1),得c =0。 (2) . 解不等式:【例6】若f(x)是偶函数,当x0
8、,+)时,f(x)=x1,求f(x1)0的解集。分析:偶函数的图象关于y轴对称,可先作出f(x)的图象,利用数形结合的方法.解:画图可知f(x)0的解集为 x1x1,f(x1)0的解集为x0x2.答案:x0x2说明:本题利用数形结合的方法解题较快、简捷.本题也可先求f(x)的表达式,再求f(x1)的表达式,最后求不等式的解也可得到结果.(3) . 求函数解析式:【例7】已知f(x)是R上的奇函数,且x(,0)时,f(x)=xlg(2x),求f(x).分析:先设x0,求f(x)的表达式,再合并.解:f(x)为奇函数,f(0)=0.当x0时,x0,f(x)=xlg(2+x),即f(x)=xlg(2
9、+x),f(x)=xlg(2+x) (x0).说明:注意自变量在区间上的转化,分段函数的处理和分类讨论的思想紧密相连。三、巩固训练:一、选择题1.若y=f(x)在x0,+)上的表达式为y=x(1x),且f(x)为奇函数,则x(,0时f(x)等于A.x(1x) B.x(1+x) C.x(1+x) D.x(x1)2.已知四个函数:, , y=3x+3-x, y=lg(3x+3-x).其中为奇函数的是A.B. C.D.3.已知y=f(x)是定义在R上的奇函数,当x0时,f(x)=x22x,则在R上f(x)的表达式为A.x(x2) B. x(x2) C.x(x2) D.x(x2)二、填空题4.已知f(
10、x)=ax2+bx+3a+b是偶函数,且定义域为a1,2a,则a=_,b=_.5.若 (xR且x0)为奇函数,则a=_.6.已知f(x)=ax7bx+2且f(5)=17,则f(5)=_.7.已知是定义在上的奇函数,当时,的图像如右图所示,那么不等式的解集是_ 三、解答题8.已知且x=lnf(x),判定G(x)的奇偶性。9.已知函数f(x)满足f(x+y)+ f(xy)=2f(x)f(y)(x、yR),且f(0)0,试证f(x)是偶函数.10.设函数是偶函数,函数是奇函数,且,求和的解析表达式。11.已知f(x)x5+ax3-bx-8,f(-2)10,求f(2)。 12.已知都是定义在R上的奇函
11、数,若在区间上的最大值为5,求在区间上的最小值。13.已知是奇函数,在区间上单调递增,且有,求实数的取值范围。四、巩固训练参考答案:一、选择题1. 解析:x(,0,x0, f(x)=(x)(1+x),f(x)=x(1+x). f(x)=x(1+x). 答案:B2. 提示:可运用定义,逐个验算.答案:D3. 解析:设x0,则x0,f(x)是奇函数,f(x)=f(x)=(x)22(x)=x22x.,即f(x)= x(|x|2),故答案:B 。二、填空题4. 解析:定义域关于原点对称,故a1=2a,又对于f(x)有f(x)=f(x)恒成立,b=0. 答案:, 0 。5. 解析:特值法:f(1)=f(
12、1) ,。答案: 。6. 解析:整体思想:f(5)=a(5)7 b(5)+2=17 (a575b)=15, f(5)=a57b5+2=15+2=13. 答案:13 。7. 解析: 是定义在上的奇函数, 补充其图像如图,又不等式同解于或,解得,或或,不等式的解集是,答案:。三、解答题8. 解:由x=lnf(x)得f(x)=ex.又,G(x)为奇函数。9. 证明:令x=y=0,有f(0)+f(0)=2f2(0). f(0)0,f(0)=1.令x=0,f(y)+f(y)=2f(0)f(y)=2f(y). f(y)=f(y). f(x)是偶函数.归纳:赋值法(代入特殊值)在处理一般函数问题时经常用到.
13、10. 解:,又函数是偶函数,函数是奇函数,上式化为,解组成的方程组得,。11. 分析:问题的结构特征启发我们设法利用奇偶性来解 解:令g(x)=x5+ax3-bx,则g(x)是奇函数,所以g(-2)g(2),于是f(-2)g(-2)-8, g(-2)=18.所以f(2)=g(2)-8=-g(-2)-8=-26. 12. 解:设,则为奇函数,因为当时,所以所以当时,即故在区间上的最小值为-1 。13. 解:因为函数是奇函数,所以由得,即又在区间上单调递增,故得 ,解得所以实数的取值范围为注意:利用函数的奇偶性、单调性求变量的范围,是函数奇偶性及单调性的逆用,培养逆向思维能力,判断出是解决本题的关键。