《函数与导数经典例题(含答案)(8页).doc》由会员分享,可在线阅读,更多相关《函数与导数经典例题(含答案)(8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-函数与导数经典例题(含答案)-第 8 页函数与导数1. 已知函数,其中()当时,求曲线在点处的切线方程;()当时,求的单调区间;()证明:对任意的在区间内均存在零点【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 ()解:当时,所以曲线在点处的切线方程为 ()解:,令,解得因为,以下分两种情况讨论: (1)若变化时,的变化情况如下表:+-+所以,的单调递增区间是的单调递减区间是。 (2)若,当变化时,的变化情况如下表:+-+所以,的单调递增区间是的单调递减区间是 ()证明:由
2、()可知,当时,在内的单调递减,在内单调递增,以下分两种情况讨论: (1)当时,在(0,1)内单调递减,所以对任意在区间(0,1)内均存在零点。 (2)当时,在内单调递减,在内单调递增,若所以内存在零点。若所以内存在零点。所以,对任意在区间(0,1)内均存在零点。综上,对任意在区间(0,1)内均存在零点。2. 已知函数,()设函数F(x)18f(x)x2h(x)2,求F(x)的单调区间与极值;()设,解关于x的方程;()设,证明:本小题主要考查函数导数的应用、不等式的证明、解方程等基础知识,考查数形结合、函数与方程、分类与整合等数学思想方法及推理运算、分析问题、解决问题的能力解:(),令,得(
3、舍去)当时;当时,故当时,为增函数;当时,为减函数为的极大值点,且()方法一:原方程可化为,即为,且当时,则,即,此时,此时方程仅有一解当时,由,得,若,则,方程有两解;若时,则,方程有一解;若或,原方程无解方法二:原方程可化为,即,当时,原方程有一解;当时,原方程有二解;当时,原方程有一解;当或时,原方程无解()由已知得,设数列的前n项和为,且()从而有,当时,又即对任意时,有,又因为,所以则,故原不等式成立3. 设函数,()求的单调区间;()求所有实数,使对恒成立注:为自然对数的底数【解析】(21)本题主要考查函数的单调性、导数运算法则、导数应用等基础知识,同时考查抽象概括、推理论证能力。
4、满分15分。 ()解:因为所以由于,所以的增区间为,减区间为 ()证明:由题意得,由()知内单调递增,要使恒成立,只要解得4. 设,其中为正实数.()当时,求的极值点;()若为上的单调函数,求的取值范围.【解析】(18)(本小题满分13分)本题考查导数的运算,极值点的判断,导数符号与函数单调变化之间的关系,求解二次不等式,考查运算能力,综合运用知识分析和解决问题的能力.解:对求导得 (I)当,若综合,可知+00+极大值极小值所以,是极小值点,是极大值点.(II)若为R上的单调函数,则在R上不变号,结合与条件a0,知在R上恒成立,因此由此并结合,知5. 已知a,b为常数,且a0,函数f(x)=-
5、ax+b+axlnx,f(e)=2(e=271828是自然对数的底数)。(I)求实数b的值;(II)求函数f(x)的单调区间;(III)当a=1时,是否同时存在实数m和M(mM),使得对每一个tm,M,直线y=t与曲线y=f(x)(x,e)都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由。【解析】22本小题主要考查函数、导数等基础知识,考查推理论证能力、抽象概括能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想,满分14分。解:(I)由(II)由(I)可得从而,故:(1)当(2)当综上,当时,函数的单调递增区间为,单调递减区间为(0,1)
6、;当时,函数的单调递增区间为(0,1),单调递减区间为。(III)当a=1时,由(II)可得,当x在区间内变化时,的变化情况如下表:-0+单调递减极小值1单调递增2又的值域为1,2。据经可得,若,则对每一个,直线y=t与曲线都有公共点。并且对每一个,直线与曲线都没有公共点。综上,当a=1时,存在最小的实数m=1,最大的实数M=2,使得对每一个,直线y=t与曲线都有公共点。6. 设函数,其中,a、b为常数,已知曲线与在点(2,0)处有相同的切线l。(I) 求a、b的值,并写出切线l的方程;(II)若方程有三个互不相同的实根0、,其中,且对任意的,恒成立,求实数m的取值范围。【解析】20本题主要考查函数、导数、不等式等基础知识,同时考查综合运用数学知识进行推理论证的能力,以及函数与方程和特殊与一般的思想,(满分13分)解:()由于曲线在点(2,0)处有相同的切线,故有由此得所以,切线的方程为 ()由()得,所以依题意,方程有三个互不相同的实数,故是方程的两相异的实根。所以又对任意的成立,特别地,取时,成立,得由韦达定理,可得对任意的则所以函数的最大值为0。于是当时,对任意的恒成立,综上,的取值范围是