《案例分析(一元线性回归模型)(8页).doc》由会员分享,可在线阅读,更多相关《案例分析(一元线性回归模型)(8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-案例分析(一元线性回归模型)-第 8 页案例分析报告(20142015学年第一学期) 课程名称: 预测与决策 专业班级: 电子商务1202 学 号: 2204120202 学生姓名: 陈维维 2014 年 11月案例分析(一元线性回归模型)我国城镇居民家庭人均消费支出预测一、 研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展
2、方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。 例如,2008元,元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。二、模型设定 我研究的对象是各地区居民消费的差异。居民消费可分为
3、城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。因此建立的是2008年截面数据模型。影响各地区城镇居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费
4、也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城镇居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 以下是2008年各地区城镇居民人均年消费支出和可支配收入表地区可支配收入消费支出 全 国 北 京 天 津 河 北 山 西 内蒙古 辽 宁 吉 林 黑龙江 上 海 江 苏 浙 江 安 徽 福 建 江 西 山 东
5、河 南 湖 北 湖 南 广 东 广 西 海 南 重 庆 四 川 贵 州 云 南 西 藏 陕 西 甘 肃 青 海 宁 夏 新 疆数据来源: 作城镇居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的散点图,如图从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立的计量经济模型为如下线性模型: Yi=a+bXi+ibbi=1,2,n 一元线性回归预测法,是指两个具有线性关系的变量,配合线性回归模型,根据自变量的变动来预测因变量平均发展趋势的方法。三、 OLS估计采用OLS法估计其模型的回归系数最小平方法的中心思想,是通过数学
6、模型,配合一条较为理想的趋势线。这条趋势线必须满足以下两点要求:(1)原数列的观察值与模型的估计值的离差平方和为最小;(2)原数列的观察值与模型的估计值的离差总和为零。1、 首先进入Excel程序,建立工作薄,接下来进行一元线性回归的输入形式。2、 计算、及,分别在“D2、E2、F2”单元格通过相对引用输入计算公式并向下复制。3、计算、及。 4、一元线性回归系数的计算:所以5、 按计算估计值:四、 相关系数 相关系数是一元线性回归中用来衡量两个变量之间相关程度的重要指标。主要有两种定义方法:根据总变差定义以及根据积差法定义,由于根据积差法定义的相关系数不需要先求回归模型的剩余变差,可以直接从样
7、本数据中计算得到,所以在本案例中比较适合使用。其定义为 相关系数;五、 模型检验1、经济意义检验所估计的参数0.6194,说明城镇居民人均年可支配收入每相差1元,可导致居民消费支出相差0.6194元,这与经济学中边际消费倾向的意义相符。2、 显著性检验 本案例中可决系数为0.945802(可决系数R2的大小表明了在y的总变差中自由量x变动所引起的百分比,它是评价两个变量之间线性相关关系强弱的一个重要指标。),说明所建模型整体上对样本数据拟合较好,即解释变量“城镇居民人均年可支配收入”对被解释变量“城镇居民人均年消费支出”的绝大部分差异作出了解释。 对回归系数的t检验:当显著性水平取=0.05,
8、自由度为n-2=31-2=29查相关系数临界值表,得R(29)=0.355。因为R=0.97252R(29)=0.355。故在=0.05显著性水平之上,检验通过,说明两个变量之间相关关系显著,也就是表明,城镇人均年可支配收入对人均年消费支出有显著影响。六、 回归预测1、计算估计标准误差。 查表确定。在Excel中输入=POWER(E34-K8*C34-K6*F34)/(G33-2),0.5) 即可得到sy 由图表中可以看出来,黑龙江省、贵州省、甘肃省、青海省、新疆省等地可支配收入以及消费支出都排名靠后。还有其他部分省虽然可支配收入高于其他省,但是消费支出却少于其他,例如,山西省,江西省,河南省
9、等(我选择的可支配收入的临界值是12000,消费水平的临界值是9000)。其中大部分都是西部地区。在西部大开发的推动下,如果西部地区的城市居民人均年可支配收入第一步争取达到2000美元(按现有汇率即人命币12245元),第二步再争取达到2500美元(即人民币15306.25元),利用所估计的模型可预测这时城市居民可能达到的人均年消费支出水平。可以注意到,这里的预测是利用所示数据模型对被解释变量在不同空间状况的空间预测。接下来进行预测:首先按确定预测区间。 所谓预测区间就是指在一定的显著性水平上,依据数理统计方法计算出的包含预测目标未来真实值的某一区间范围。根据公式可以求得:当显著性水平取=0.
10、05,自由度n-m=31-2=29时,查t分布表得: t第一步达到12245元的时候,预测区间为:输入公式=H35-K29*K33,=H35+K29*K33,得:预测区间为(7510.3966,10219.9319)第二步达到15306.25元的时候,预测区间为:输入公式=H36-K29*K33,=H36+K29*K33,得:预测区间为(9545.3512,12254.8865)七、总结 消费需求主要来源于居民的可支配收入,而居民的可支配收入又来自于居民的人均收入即狭义上的居民的固定工资,它是形成当期购买力最主要的来源,同样也是影响消费需求的最直接最重要的因素。 此次案例分析我以2008年全国
11、各地可支配收入和消费支出数据资料为基础,假设人均年可支配收入为自变量X(单位:元),人均年消费支出为因变量y(单位:元),并做出可支配收入和消费支出的相关关系图。从这两个变量的相关关系图可观测到两者之间的大体趋势,发现它们基本上呈现出一种直线的统计关系,所以我进一步进行回归分析,并进行线性相关系数R的显著性检验。若|R|=1表示完全线性相关;0|R|1表示存在不同程度线性相关;|R|0.3为低度线性相关,0.3|R|0.7为高度线性相关。|R|越接近于I,说明两个变量的相关程度越密切。 通过公式,利用Excel数字处理功能,进行数据处理和简单的线性相关分析,我得出2008年全国城镇居民可支配收
12、入和消费需求的回归方程式:y=0.6647x+725.3459。相关系数为:R=0.9725 ,R2=0.9458,说明2008年全国城镇居民可支配收入和消费支出之间存在着显著的相关关系。居民可支配收入每增加1000元,消费支出将增加大约72.5元。可以这么说,居民可支配收入与消费需求状况紧密相关,可支配收入会对消费需求产生重要影响,即可支配收入的扩大或缩小会导致消费需求的相应的变化。 最后通过线性相关性的检验,证实前面得出的结论:居民的可支配收入对消费需求的影响十分显著。居民可支配收入的稳定提高,使居民的消费需求有了最坚实的基础,进而提高居民的消费需求和消费支出,拥有一个稳定舒心的生活,高水平的居民可支配收入,是影响消费需求的决定性的因素。