《- 华罗庚学校数学课本:二年级.docx》由会员分享,可在线阅读,更多相关《- 华罗庚学校数学课本:二年级.docx(268页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、华罗庚学校数学课本:二年级上册第一讲 速算与巧算一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆
2、成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28
3、+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,
4、8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=59 中间数是5=45 共9个数(2)计算:1+3+5+7+9=55 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=65 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=95 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=125 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+1
5、0=(1+10)5=115=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)4=204=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=206+3+0-1+2-2+1=120+3=1236个
6、加数都按20相加,其和=206=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=1005+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=1005=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5. 习题一1.计算:
7、(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计
8、算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5习题一解答1.解:(1)18+28+72=18+(28+72)=18+100=118(2)87+15+13=(87+13)+15=100+15=115(3)43+56+17+24=(43+17)+(56+24)=60+80=140(4)28+44+39+62+56+21=(28+62)+(44+56)+(39+21)=90+100+60=2502.解:(1)98+67=98+2+65=100+65=165(2)43+28=43+7+21=50+21=71或43+28=41+(2+28)=41+30=7
9、1(3)75+26=75+25+1=100+1=1013.解:(1)82-49+18=82+18-49=100-49=51(2)82-50+49=82-1=81(减50再加49等于减1)(3)41-64+29=41+29-64=70-64=64.解:(1)99+98+97+96+95=1005-1-2-3-4-5=500-15=485(每个加数都按100算,再把多加的减去)或99+98+97+96+95=975=485(2)9+99+999=10+100+1000-3=1110-3=11075.解:(1)5+6+7+8+9=75=35(2)5+10+15+20+25+30+35=207=140
10、(3)9+18+27+36+45+54=(9+54)3=633=189(4)12+14+16+18+20+22+24+26=(12+26)4=384=1526.解:(1)53+49+51+48+52+50=506+3-1+1-2+2+0=300+3=303(2)87+74+85+83+75+77+80+78+81+84=8010+7-6+5+3-5-3+0-2+1+4=800+4=8047.解:方法1:原式=21+21+21+15=78方法2:原式=214-6=84-6=78方法3:原式=(1+2+3+4+5+6)3+15=213+15=63+15=78第二讲 数数与计数(一)数学需要观察.大
11、数学家欧拉就特别强调观察对于数学发现的重要作用,认为“观察是一件极为重要的事”.本讲数数与计数的学习有助于培养同学们的观察能力.在这里请大家记住,观察不只是用眼睛看,还要用脑子想,要充分发挥想像力.例1 数一数,图21和图22中各有多少黑方块和白方块?解:仔细观察图21,可发现黑方块和白方块同样多.因为每一行中有4个黑方块和4个白方块,共有8行,所以:黑方块是:48=32(个)白方块是:48=32(个)再仔细观察图22,从上往下看:第一行白方块5个,黑方块4个;第二行白方块4个,黑方块5个;第三、五、七行同第一行,第四、六、八行同第二行;但最后的第九行是白方块5个,黑方块4个.可见白方块总数比
12、黑方块总数多1个.白方块总数:5+4+5+4+5+4+5+4+5=41(个)黑方块总数:4+5+4+5+4+5+4+5+4=40(个)再一种方法是:每一行的白方块和黑方块共9个.共有9行,所以,白、黑方块的总数是:99=81(个).由于白方块比黑方块多1个,所以白方块是41个,黑方块是40个.例2 图23所示砖墙是由正六边形的特型砖砌成,中间有个“雪花”状的墙洞,问需要几块正六边形的砖(图24)才能把它补好?解:仔细观察,并发挥想象力可得出答案,用七块正六边形的砖可把这个墙洞补好.如果动手画一画,就会看得更清楚了.例3将8个小立方块组成如图25所示的“丁”字型,再将表面都涂成红色,然后就把小立
13、方块分开,问:(1)3面被涂成红色的小立方块有多少个?(2)4面被涂成红色的小立方块有多少个?(3)5面被涂成红色的小立方块有多少个?解:如图26所示,看着图,想像涂色情况.当把整个表面都涂成红色后,只有那些“粘在一起”的面(又叫互相接触的面),没有被涂色.每个小立方体都有6个面,减去没涂色的面数,就得涂色的面数.每个小立方体涂色面数都写在了它的上面,参看图26所示.(1)3面涂色的小立方体共有1个;(2)4面涂色的小立方体共有4个;(3)5面涂色的小立方体共有3个.例4如图27所示,一个大长方体的表面上都涂上红色,然后切成18个小立方体(切线如图中虚线所示).在这些切成的小立方体中,问:(1
14、)1面涂成红色的有几个?(2)2面涂成红色的有几个?(3)3面涂成红色的有几个?解:仔细观察图形,并发挥想像力,可知:(1)上下两层中间的2块只有一面涂色;(2)每层四边中间的1块有两面涂色,上下两层共8块;(3)每层四角的4块有三面涂色,上下两层共有8块.最后检验一下小立体总块数:习题二1.如图28所示,数一数,需要多少块砖才能把坏了的墙补好?2.图29所示的墙洞,用1号和2号两种特型砖能补好吗?若能补好,共需几块?3.图210所示为一块地板,它是由1号、2号和3号三种不同图案的瓷砖拼成.问这三种瓷砖各用了多少块?4.如图211所示,一个木制的正方体,棱长为3寸,它的六个面都被涂成了红色.如
15、果沿着图中画出的线切成棱长为1寸的小正方体.求:(1)3面涂成红色的有多少块?(2)2面涂成红色的有多少块?(3)1面涂成红色的有多少块?(4)各面都没有涂色的有多少块?(5)切成的小正方体共有多少块?5.图212所示为棱长4寸的正方体木块,将它的表面全染成蓝色,然后锯成棱长为1寸的小正方体.问:(1)有3面被染成蓝色的多少块?(2)有2面被染成蓝色的多少块?(3)有1面被染成蓝色的多少块?(4)各面都没有被染色的多少块?(5)锯成的小正方体木块共有多少块?6.图213所示为一个由小正方体堆成的“塔”.如果把它的外表面(包括底面)全部涂成绿色,那么当把“塔”完全拆开时,3面被涂成绿色的小正方体
16、有多少块?7.图214中的小狗与小猫的身体的外形是用绳子分别围成的,你知道哪一条绳子长吗?(仔细观察,想办法比较出来).2+8+8=18(个). 习题二解答1.解:用10块砖可把墙补好,可以从下往上一层一层地数(发挥想像力):共1+2+2+1+2+2=10(块).如果用铅笔把砖画出来(注意把砖缝对好)就会十分清楚了,如图215所示.2.解:仔细观察,同时发挥想像力可知需1号砖2块、2号砖1块,也就是共需(如图216所示)1+2=3(块).3.解:因为图形复杂,要特别仔细,最好是有次序地按行分类数,再进行统计:4.解:(1)3面涂色的有8块:它们是最上层四个角上的4块和最下层四个角上的4块.(2
17、)2面涂色的有12块:它们是上、下两层每边中间的那块共8块和中层四角的4块.(3)1面涂色的有6块:它们是各面(共有6个面)中心的那块.(4)各面都没有涂色的有一块:它是正方体中心的那块.(5)共切成了333=27(块).或是如下计算:8+12+6+1=27(块).5.解:同上题(1)8块;(2)24块;(3)24块;(4)8块;(5)64块.6.解:3面被涂成绿色的小正方体共有16块,就是图218中有“点”的那些块(注意最下层有2块看不见).7.解:分类数一数可知,围成小猫的那条绳子比较长.因为小狗身体的外形是由32条直线段和6条斜线段组成;小猫身体的外形是由32条直线段和8条斜线段组成.第
18、三讲 数数与计数(二)例1 数一数,图31中共有多少点?解:(1)方法1:如图32所示从上往下一层一层数:第一层 1个第二层 2个第三层 3个第四层 4个第五层 5个第六层 6个第七层 7个第八层 8个第九层 9个第十层 10个第十一层 9个第十二层 8个第十三层 7个第十四层 6个第十五层 5个第十六层 4个第十七层 3个第十八层 2个第十九层 1个总数1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=(1+2+3+4+5+6+7+8+9+10)+(9+8+7+6+5+4+3+2+1)=55+45=100(利用已学过的知识计算).(2)方法2:如图33所示:从上往
19、下,沿折线数第一层 1个第二层 3个第三层 5个第四层 7个第五层 9个第六层 11个第七层 13个第八层 15个第九层 17个第十层 19个总数:1+3+5+7+9+11+13+15+17+19=100(利用已学过的知识计算).(3)方法3:把点群的整体转个角度,成为如图34所示的样子,变成为10行10列的点阵.显然点的总数为1010=100(个).想一想:数数与计数,有时有不同的方法,需要多动脑筋.由方法1和方法3得出下式:1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=1010即等号左边这样的一串数之和等于中间数的自乘积.由此我们猜想:1=111+2+1=2
20、21+2+3+2+1=331+2+3+4+3+2+1=441+2+3+4+5+4+3+2+1=551+2+3+4+5+6+5+4+3+2+1=661+2+3+4+5+6+7+6+5+4+3+2+1=771+2+3+4+5+6+7+8+7+6+5+4+3+2+1=881+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1=991+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=1010这样的等式还可以一直写下去,能写出很多很多.同学们可以自己检验一下,看是否正确,如果正确我们就发现了一条规律.由方法2和方法3也可以得出下式:1+3+5+7+9+11+13+1
21、5+17+19=1010.即从1开始的连续奇数的和等于奇数个数的自乘积.由此我们猜想:1+3=221+3+5=331+3+5+7=441+3+5+7+9=551+3+5+7+9+11=661+3+5+7+9+11+13=771+3+5+7+9+11+13+15=881+3+5+7+9+11+13+15+17=991+3+5+7+9+11+13+15+17+19=1010还可往下一直写下去,同学们自己检验一下,看是否正确,如果正确,我们就又发现了一条规律.例2 数一数,图35中有多少条线段?解:(1)我们已知,两点间的直线部分是一条线段.以A点为共同端点的线段有:AB AC AD AE AF 5
22、条.以B点为共同左端点的线段有:BC BD BE BF 4条.以C点为共同左端点的线段有:CD CE CF 3条.以D点为共同左端点的线段有:DE DF 2条.以E点为共同左端点的线段有:EF1条.总数5+4+3+2+1=15条.(2)用图示法更为直观明了.见图36.总数5+4+3+2+1=15(条).想一想:由例2可知,一条大线段上有六个点,就有:总数=5+4+3+2+1条线段.由此猜想如下规律(见图37):还可以一直做下去.总之,线段总条线是从1开始的一串连续自然数之和,其中最大的自然数比总数小1.我们又发现了一条规律.它说明了点数与线段总数之间的关系.上面的事实也可以这样说:如果把相邻两
23、点间的线段叫做基本线段,那么一条大线段上的基本线段数和线段总条数之间的关系是:线段总条数是从1开始的一串连续自然数之和,其中最大的自然数等于基本线段的条数(见图38).基本线段数 线段总条数还可以一直写下去,同学们可以自己试试看.例3 数一数,图39中共有多少个锐角?解:(1)我们知道,图中任意两条从O点发出的射线都组成一个锐角.所以,以OA边为公共边的锐角有:LAOB,AOC,AOD,AOE,AOF共5个.以OB边为公共边的锐角有:BOC,BOD,BOE,BOF共4个.以OC边为公共边的锐角有:COD,COE,COF共3个.以OD边为公共边的锐角有:DOE,DOF共2个.以OE边为一边的锐角
24、有:EOF只1个.锐角总数5+4+3+2+115(个).用图示法更为直观明了:如图310所示,锐角总数为:5+4+3+2+1=15(个).想一想:由例3可知:由一点发出的六条射线,组成的锐角的总数=5+4+3+2+1(个),由此猜想出如下规律:(见图31115)两条射线1个角(见图311)三条射线2+1个角(见图312)四条射线3+2+1个角(见图313)五条射线4+3+2+1个角(见图314)六条射线5+4+3+2+1个角(见图315)总之,角的总数是从1开始的一串连续自然数之和,其中最大的自然数比射线数小1.同样,也可以这样想:如果把相邻两条射线构成的角叫做基本角,那么有共同顶点的基本角和
25、角的总数之间的关系是:角的总数是从1开始的一串连续自然数之和,其中最大的自然数等于基本角个数.注意,例2和例3的情况极其相似.虽然例2是关于线段的,例3是关于角的,但求总数时,它们有同样的数学表达式.同学们可以看出,一个数学式子可以表达表面上完全不同的事物中的数量关系,这就是数学的魔力.习题三1.书库里把书如图316所示的那样沿墙堆放起来.请你数一数这些书共有多少本?2.图317所示是一个跳棋盘,请你数一数,这个跳棋盘上共有多少个棋孔?3.数一数,图318中有多少条线段?4.数一数,图319中有多少锐角?5.数一数,图320中有多少个三角形?6.数一数,图321中有多少正方形?习题三解答1.解
26、:方法1:从左往右一摞一摞地数,再相加求和:10+11+12+13+14+15+14+13+12+11+10=135(本).方法2:把这摞书形成的图形看成是由一个长方形和一个三角形“尖顶”组成.长方形中的书 1011=110三角形中的书 1+2+3+4+5+4+3+2+1=25总数:110+25=135(本).2.解:因为棋孔较多,应找出排列规律,以便于计数.仔细观察可知,图中大三角形ABC上的棋孔的排列规律是(从上往下数):1,2,3,4,5,6,7,8,9,10,11,12,13,另外还有三个小三角形中的棋孔的排列规律是1,2,3,4,所以棋孔总数是:(1+2+3+4+5+6+7+8+9+
27、10+11+12+13)+(1+2+3+4)3=91+103=121(个).3.解:方法1:按图322所示方法数(图中只画出了一部分)线段总数:7+6+5+4+3+2+1=28(条).方法2:基本线段共7条,所以线段总数是:7+6+5+4+3+2+1=28(条).4.解:按图323的方法数:角的总数:7+6+5+4+3+2+1=28(个).5.解:方法1:(1)三角形是由三条边构成的图形.以OA边为左公共边构成的三角形有:OAB,OAC,OAD,OAE,OAF,OAG,OAH,共7个;以OB边为左公共边构成的三角形有:OBC,OBD,OBE,OBF,OBG,OBH,共6个;以OC边为左公共边构
28、成的三角形有:OCD,OCE,OCF,OCG,OCH,共5个;以OD边为左公共边构成的三角形有:ODE,ODF,ODG,ODH,共4个;以OE边为左公共边构成的三角形有:OEF,OEG,OEH,共3个;以OF边为左公共边构成的三角形有:OFG,OFH,共2个;以OG边和OH,GH两边构成的三角形仅有:OGH1个;三角形总数:7+6+5+4+3+2+1=28(个).(2)方法2:显然底边AH上的每一条线段对应着一个三角形,而基本线段是7条,所以三角形总数为:7+6+5+4+3+2+1=28(个).6.解:最小的正方形有25个,由4个小正方形组成的正方形 16个;由9个小正方形组成的正方形 9个;
29、由16个小正方形组成的正方形 4个;由25个小正方形组成的正方形 1个;正方形总数:25+16+9+4+1=55个.加到收藏夹添加相关资源第四讲 认识简单数列我们把按一定规律排列起来的一列数叫数列.在这一讲里,我们要认识一些重要的简单数列,还要学习找出数列的生成规律;学会把数列中缺少的数写出来,最后还要学习解答一些生活中涉及数列知识的实际问题.例1 找出下面各数列的规律,并填空.(1)1,2,3,4,5,8,9,10.(2)1,3,5,7,9,15,17,19.(3)2,4,6,8,10,16,18,20.(4)1,4,7,10,19,22,25.(5) 5,10,15,20,35,40,45
30、.注意:自然数列、奇数列、偶数列也是等差数列.例2 找出下面的数列的规律并填空.1,1,2,3,5,8,13,55,89.解:这叫斐波那契数列,从第三个数起,每个数都是它前面的两个数之和.这是个有重要用途的数列.8+13=21,13+21=34.所以:空处依次填:例3 找出下面数列的生成规律并填空.1,2,4,8,16,128,256.解:它叫等比数列,它的后一个数是前一个数的2倍.162=32,322=64,所以空处依次填:例4 找出下面数列的规律,并填空.1,2,4,7,11,29,37.解:这数列规律是:后一个数减前一个数的差是逐渐变大的,这些差是个自然数列:例5 找出下面数列的规律,并
31、填空:1,3,7,15,31,255,511.解:规律是:后一个数减前一个数的差是逐渐变大的,差的变化规律是个等比数列,后一个差是前一个差的2倍.另外,原数列的规律也可以这样看:后一个数等于前一个数乘以2再加1,即后一个数=前一个数2+1.例6 找出下面数列的生成规律,并填空.1,4,9,16,25,64,81,100.解:这是自然数平方数列,它的每一个数都是自然数的自乘积.如:1=11,4=22,9=33,16=44,25=55,64=88,81=99,100=1010.若写成下面对应起来的形式,就看得更清楚.自然数列: 1 2 3 4 5 6 7 8 9 10 自然数平方数列:1 4 9
32、16 25 36 49 64 81 100例7 一辆公共汽车有78个座位,空车出发.第一站上1位乘客,第二站上2位,第三站上3位,依此下去,多少站以后,车上坐满乘客?(假定在坐满以前,无乘客下车,见表四(1)方法2:由上表可知,车上的人数是自1开始的连续自然数相加之和,到第几站后,就加到几,所以只要加到出现78时,就可知道是到多少站了,1+2+3+4+5+6+7+8+9+10+11+12=78(人)可见第12站以后,车上坐满乘客.例8 如果第一个数是3,以后每隔6个数写出一个数,得到一列数:3,10,17,73.这里3叫第一项,10叫第二项,17叫第三项,试求73是第几项?解:从第1项开始,把
33、各项依次写出来,一直写到73出现为止(见表四(2).可见73是第11项.例9 一天,爸爸给小明买了一包糖,数一数刚好100块.爸爸灵机一动,又拿来了10个纸盒,接着说:“小明,现在你把糖往盒子里放,我要求你在第一个盒子里放2块,第二个盒子里放4块,第三个盒子里放8块,第四个盒子里放16块,照这样一直放下去.要放满这10个盒,你说这100块糖够不够?”小朋友,请你帮小明想一想?解:小朋友,你是不是以为100块糖肯定能够放满这10个纸盒的了!下面让我们算一算,看你想得对不对(见表四(3).表四(3)放满10个盒所需要的糖块总数:可见100块糖是远远不够的,还差1946块呢!这可能是你没有想到的吧!
34、其实,数学中还有很多很多奇妙无比的故事呢. 习题四1.从1开始,每隔两个数写出一个自然数,共写出十个数来.2.从1开始,每隔六个数写出一个自然数,共写出十个数来.3.在习题一和习题二中,按题目要求写出的两个数列中,除1以外出现的最小的相同的数是几?4.自2开始,隔两个数写一个数:2,5,8,101.可以看出,2是这列数的第一项,5是第二项,8是第三项,等等.问101是第几个数?5.如图41所示,“阶梯形”的最高处是4个正方形叠起来的高度,而且整个图形包括了10个小正方形.如果这个“阶梯形”的高度变为12个小正方形叠起来那样高,那么,整个图形应包括多少个小正方形?6.如图42所示,把小立方体叠起
35、来成为“宝塔”,求这个小宝塔共包括多少个小立方体?7.开学的第一个星期,小明准备发起成立一个趣味数学小组,这时只有他一个人.他决定第二个星期吸收两名新组员,而每个新组员要在进入小组后的下一个星期再吸收两名新组员,求开学4个星期后,这个小组共有多少组员?8.图43所示为细胞的增长方式.就是说一个分裂为两个,再次分裂变为4个,第三次分裂为8个,照这样下去,问经过10次分裂,一个细胞变成几个?9.图44所示是一串“黑”、“白”两色的珠子,其中有一些珠子在盒子里,问(1)盒子里有多少珠子?(2)这串珠子共有多少个?习题四解答 1.解:可以先写出从1开始的自然数列,再按题目要求删去那些不应该出现的数,就
36、得到答案了:即1,4,7,10,13,16,19,22,25,28可以看出,这是一个等差数列,后面一个数比前面一个数大3.2.解:仿习题1,先写前面的几个数如下:可以看出,1,8,15,22,也是一个等差数列,后面的一个数比前面的一个数大7.按照这个规律,可以写出所有的10个数:1,8,15,22,29,36,43,50,57,64.3. 解:观察习题一和习题二两个数列:可见两个数列中最小的相同数是22.4.解:经仔细观察后可以看出,这是一个等差数列,后一个数比前一个数大3,即公差是3.下面再多写出几项,以便从中发现规律:(表四(4)再仔细观察可知:第二项=第一项+1公差,即52+13;第三项
37、=第一项+2公差,即8=2+23;第四项=第一项+3公差,即11=2+33;第五项=第一项+4公差,即14=2+43;由于101=2+333;可见,101是第34项,即第34个数.5.解:仔细观察可发现,这个“阶梯形”图形最高处是4个小正方形时,它就有4个台阶,整个图形包括的小正方形数为:1+2+3+4=10.所以最高处是12个小正方形时,它必有12个台阶,整个图形包括的小正方形数为:1+2+3+4+5+6+7+8+9+10+11+12=78(个).6.解:从上往下数,小宝塔共有六层.仔细观察可发现如下规律(表四(5):所以六层小立方体的总数为:1+3+6+10+15+21=56(个).7.解
38、:列表如下:4个星期后小组的总人数:1+2+4+8=15(人).8.解:列表如下:一个细胞经过10次分裂变为1024个.9.解:仔细观察可知,这串珠子的排列规律是:白 黑 白 黑 白 黑 白 黑 白 黑 白 黑 白 黑 白 1, 1,1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1,在盒子里有:4+1+4=9(个).这一串珠子总数是:1+1+1+2+1+3+1+4+1+5+1+6+1+7+1=1+2+3+4+5+6+7+(1+1+1+1+1+1+1+1)=28+8=36(个).第五讲 自然数列趣题本讲的习题,大都是关于自然数列方面的计数问题,解题的思维方法一般是运用枚
39、举法及分类统计方法,望同学们能很好地掌握它.例1 小明从1写到100,他共写了多少个数字“1”?解:分类计算:“1”出现在个位上的数有:1,11,21,31,41,51,61,71,81,91共10个;“1”出现在十位上的数有:10,11,12,13,14,15,16,17,18,19共10个;“1”出现在百位上的数有:100共1个;共计10+10+1=21个.例2 一本小人书共100页,排版时一个铅字只能排一位数字,请你算一下,排这本书的页码共用了多少个铅字?解:分类计算:从第1页到第9页,共9页,每页用1个铅字,共用19=9(个);从第10页到第99页,共90页,每页用2个铅字,共用290
40、=180(个);第100页,只1页共用3个铅字,所以排100页书的页码共用铅字的总数是:9+180+3=192(个).例3 把1到100的一百个自然数全部写出来,用到的所有数字的和是多少?解:(见图51)先按题要求,把1到100的一百个自然数全部写出来,再分类进行计算:如图51所示,宽竖条带中都是个位数字,共有10条,数字之和是:(1+2+3+4+5+6+7+8+9)10=4510=450.窄竖条带中,每条都包含有一种十位数字,共有9条,数字之和是:110+210+310+410+510+610+710+810+910=(1+2+3+4+5+6+7+8+9)10=4510450.另外100这个
41、数的数字和是1+0+0=1.所以,这一百个自然数的数字总和是:450+450+1=901.顺便提请同学们注意的是:一道数学题的解法往往不只一种,谁能寻找并发现出更简洁的解法来,往往标志着谁有更强的数学能力.比如说这道题就还有更简洁的解法,试试看,你能不能找出来? 习题五1.有一本书共200页,页码依次为1、2、3、199、200,问数字“1”在页码中共出现了多少次?2.在1至100的奇数中,数字“3”共出现了多少次?3.在10至100的自然数中,个位数字是2或是7的数共有多少个?4.一本书共200页,如果页码的每个数字都得用一个单独的铅字排版(比如,“150”这个页码就需要三个铅字“1”、“5”和“0”),问排这本书的页码一共需要多少个铅字?