《八年级数学上册第一单元(3页).doc》由会员分享,可在线阅读,更多相关《八年级数学上册第一单元(3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-八年级数学上册第一单元-第 3 页一、选择题:(每小题4分,共40分)1、下列四组数据不能作为直角三角形的三边长的是( )A6、8、10 B. 5、12、13 C. 12、18、22 D. 9、12、152、将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( )A、钝角三角形 B、锐角三角形 C、直角三角形 D、等腰三角形3、如图(1),带阴影的矩形面积是( )平方厘米A9 B24 C45 D514、如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( ) A. 12米 B. 13米 C. 14米 D. 15米5、等腰三角形的一腰长为13,底边长为10,则它的面积为(
2、 )A.65 B.60 C.120 D.1306、已知一直角三角形的木版,三边的平方和为1800cm2,则斜边长为( )A、 B、 C、 D、5题7、等边三角形的边长是10,它的高的平方等于( )A.50 B.75 C.125 D.2008、直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( )A、6厘米 B、8厘米 C、厘米 D、厘米9、已知RtABC中,C=90,若a+b=14cm,c=10cm,则RtABC的面积是() A、24cm2B、36cm2C、48cm2D、60cm210如图,在直角三角形中,C,AC=3,将其绕B点顺时针旋转一周,则分别以BA,BC为半径的圆形成一环,
3、该圆环的面积为()、ABCD7cm10题二、填空题:(每小题3分,共15分)新课标第一网11、ABC中,若ACAB= BC,则BC= 12、若三角形的三边之比为345,则此三角形为 三角形。13、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为_cm2。14、如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”他们仅仅少走了 步路(假设2步为1米),却踩伤了花草 15、正方形的面积为100平方厘米,则该正方形的对角线长的平方为 三、解答题:(共45分)A16、如图,从电线杆离地面6
4、m处向地面拉一条长10 m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?( 6分)BC18、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高度是多少?(7分)19、19.如图正方形网格中的ABC,若小方格边长为1,请你根据所学的知识(1)求ABC的面积(1)判断ABC是什么形状? 并说明理由. (8分)20、如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求FC的长。(7分)21、(9分)23如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B离点C 5 cm,一
5、只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?22、(8分)中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个全等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子: C第17题图 (1) 你能用下面的图形也来验证一下勾股定理吗?试一试!(2) 你自己还能设计一种方法来验证勾股定理吗?