导数结合洛必达法则巧解高考压轴题(4页).doc

上传人:1595****071 文档编号:37042007 上传时间:2022-08-29 格式:DOC 页数:4 大小:1.02MB
返回 下载 相关 举报
导数结合洛必达法则巧解高考压轴题(4页).doc_第1页
第1页 / 共4页
导数结合洛必达法则巧解高考压轴题(4页).doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《导数结合洛必达法则巧解高考压轴题(4页).doc》由会员分享,可在线阅读,更多相关《导数结合洛必达法则巧解高考压轴题(4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-导数结合洛必达法则巧解高考压轴题-第 4 页 导数结合洛必达法则巧解高考压轴题2010年和2011年高考中的全国新课标卷中的第21题中的第步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。洛必达法则简介:法则1 若函数f(x) 和g(x)满足下列条件:(1) 及; (2)在点a的去心邻域内,f(x) 与g(x) 可导且g(x)0; (3),那么 =。 法则2 若函数f(x) 和g(x)满足下列条件:(1) 及; (2),f(x) 和g(x)在与上可导,且g(x)0; (3),那么 =。 法则3 若函数f(x) 和g(x)满足下列条件:(1) 及

2、; (2)在点a的去心邻域内,f(x) 与g(x) 可导且g(x)0; (3),那么 =。利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 将上面公式中的xa,x换成x+,x-,洛必达法则也成立。洛必达法则可处理,型。在着手求极限以前,首先要检查是否满足,型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。二高考题处理1.(2010年全国新课标理)设函数。(1) 若,求的单调区间;(2) 若当时,求的取值范围原解:(1)时,.当时,;当时,.故在单调

3、减少,在单调增加(II)由(I)知,当且仅当时等号成立.故从而当,即时,而,于是当时,.由可得.从而当时,故当时,而,于是当时,.综合得的取值范围为原解在处理第(II)时较难想到,现利用洛必达法则处理如下:另解:(II)当时,对任意实数a,均在;当时,等价于令(x0),则,令,则,知在上为增函数,;知在上为增函数,;,g(x)在上为增函数。由洛必达法则知,故综上,知a的取值范围为。2(2011年全国新课标理)已知函数,曲线在点处的切线方程为。()求、的值;()如果当,且时,求的取值范围。原解:()由于直线的斜率为,且过点,故即解得,。()由()知,所以考虑函数,则。(i)设,由知,当时,h(x

4、)递减。而故当时, ,可得;当x(1,+)时,h(x)0从而当x0,且x1时,f(x)-(+)0,即f(x)+.(ii)设0k0,故 (x)0,而h(1)=0,故当x(1,)时,h(x)0,可得h(x)0,而h(1)=0,故当x(1,+)时,h(x)0,可得 h(x)0,与题设矛盾。 综合得,k的取值范围为(-,0原解在处理第(II)时非常难想到,现利用洛必达法则处理如下:另解:(II)由题设可得,当时,k=0在上为增函数=0当时,当x(1,+)时,当时,当x(1,+)时,在上为减函数,在上为增函数由洛必达法则知,即k的取值范围为(-,0规律总结:对恒成立问题中的求参数取值范围,参数与变量分离较易理解,但有些题中的求分离出来的函数式的最值有点麻烦,利用洛必达法则可以较好的处理它的最值,是一种值得借鉴的方法。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁