《反例在数学中的应用毕业论文(29页).doc》由会员分享,可在线阅读,更多相关《反例在数学中的应用毕业论文(29页).doc(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-反例在数学中的应用毕业论文-第 23 页北方民族大学学士学位论文论文题目: 反例在数学中的应用 毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作 者 签 名: 日 期: 指导教师签名: 日期: 使用授权说明本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,
2、即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。作者签名: 日期: 年 月 日学位论文版权使用授
3、权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。涉密论文按学校规定处理。作者签名:日期: 年 月 日导师签名: 日期: 年 月 日反例在数学中的应用摘 要高等代数和数学分析是一门很重要的基础课程,对学生的数学思想的形成和后继课程的学习都有着十分重要的意义反例思想是数学中的重要思想,对概念的理解,命题的研究中都具有不可替代的作用恰当地运用反例,对于正确理解概念,培养学生的逻辑思维
4、能力,将起着十分重要的作用本文主要通过对高等代数和数学分析的学习,列举了课本中的反例,并用举反例的方法加强了对一些基本概念和基本定理的理解关键词:反例,高等代数,数学分析Application of counterexample in MathematicsAbstractHigher Algebra and Mathematical Analysis are important basic courses, its very important to the formation of mathematical thoughts of students and learning of the
5、following coursesThe counterexample is an important thought in Mathematical, and it plays an irreplaceable role in the understanding of the concept, and natureThe proper use of counterexamples, for a correct understanding of the concept, and develop their logical thinking ability, will play a very i
6、mportant roleThis paper mainly through the learning of Higher Algebra and Mathematical Analysis, lists the counterexamples in textbooks, and strengthen the understanding of basic concepts and geometrical theoremsKey Words: counterexample ,Higher Algebra, Mathematical Analysis目 录前 言1第一章高等代数中的反例21.1矩阵
7、中的反例21.2多项式中的反例81.3线性空间中的反例111.4线性变换中的反例12第二章数学分析中的反例142.1数列中的反例142.2函数中的反例152.3微商与微分中的反例192.4微积分中的反例202.5级数中的反例212.6偏导数与全微分中的反例25致 谢27参考文献28前 言“全等的三角形是相似的”这一命题是正确的,我们需要加以严格的证明;然而对于不正确的命题“相似的三角形一定是全等的”,那么我们就要找到两个相似但并不是全等的三角形,即举出一个反例由此看来,对于命题来说,给出证明和构造反例是同等重要的数学分析中包含了一套抽象且形式化的理论体系,概念难以理解,学习中容易犯一些表象的错
8、误,比如,我们会将一些函数的特定性质通过四则运算用到另一个函数上反例是解决此类问题最有效的方法由于数学分析思维的严谨性,定理性质的给出一般都带有一些限制条件,这些条件是不可忽视的恰当地使用反例,对于深入理解定理的条件,准确掌握概念的本质,可以起到无可比拟的作用此外,反例对于数学学科的理论发展和完善也起着非常重要的作用构造反例,可以深化理解基本概念,可以充分掌握定理的本质,可以有效纠正错误的命题或定理;通过构造反例,从反面消除一些易出错的条件,严格区分那些相近易混的概念,把握概念的要素和本质定理证明中,反例具有同等重要的作用,通过严密的证明才可以肯定一个命题的正确性,而反例即可否定一个命题的正确
9、性这篇论文的主要内容是举出关于数学中的反例,包括高等代数和数学分析两部分在举反例的过程中,所涉及到的定理和命题均参照高等代数第三版和数学分析第二版的教材,为了加强对问题的理解,我们举出了一些具有说明性的反例第一章 高等代数中的反例高等代数是数学专业的一门重要基础课程之一, 为进一步学习其他后续知识奠定了基础,它包括了对多项式、矩阵、线性空间、线性变换的学习下面列出在学习过程中遇到的需要用反例来判断命题或定理的正确性的例子1.1 矩阵中的反例矩阵是数学中应用广泛的极其重要的概念,在高等代数中,它占着十分重要的地位,它贯穿了整个高等代数的学习下面就列出矩阵的运算以及不同性质矩阵的之间的关系所运用的
10、反例矩阵乘积中的反例定义1.11 设, ,那么矩阵,其中称为与的乘积,记为1. 我们知矩阵的加法满足交换律,而矩阵的乘法不适合交换律(1)有意义,当时,没有意义;(2)和都有意义,当时,它们乘积是阶数不等的矩阵;(3)和都是阶的例 取则故,即矩阵不适合乘法交换律2. 矩阵的乘法不满足消去律:,未必有例 取显然而3. 一般情况下,例 取则所以故并不是恒成立的只要,就有4. 定理 设和是数域上的两个矩阵,那么 那么,是否也成立?答案是不成立,存在反例例 阶矩阵,而,故不成立5. 阶矩阵,且,未必有例 当时,取有 ,但是对称阵中的反例1. 对称阵之和仍为对称阵,对称阵之积未必是对称阵。例则不是对称阵
11、2. 实对称阵和对角阵相似,但和对角阵相似的未必对称例 取有,即与相似,是对角阵,而不是对称阵3. 反对称矩阵是指满足条件的矩阵,那么反对称矩阵之积未必是反对称矩阵例 均为反对称矩阵而当,时,是对称阵,但不是反对称矩阵正定阵中的反例1. 正定阵的和还是正定阵,但正定阵的差未必是正定阵例 都是正定阵,但不是正定阵2. 正定阵的积未必是正定阵例 都是正定阵而不是正定阵3. 是正定阵,则的主对角线上元素都大于零但反之不真例都不是正定阵正交阵中的反例正交阵2是指满足条件的阶实数矩阵1. 我们知道正交阵之积仍为正交阵,那么正交阵之和是不是正交阵?例 以下两个阶矩阵都是正交矩阵,因为,但而所以正交阵的和不
12、一定是正交阵2. 若是正交阵,则,但反之不真例 而,都不是正交阵等价矩阵、合同矩阵、相似矩阵定义1.2 设是数域上两个级矩阵,如果可以找到数域上的级可逆矩阵,使得,就说相似于定义1.3 矩阵与称为等价的,如果可以由经过一系列初等变换得到定义1.4 数域上矩阵,成为合同的,如果有数域上可逆的矩阵,使1. 合同矩阵一定是等价矩阵,但反之不真例 取与等价,因为假设与合同,即存在可逆矩阵,使得设则故则,(矛盾),故不存在可逆阵,则与不是合同的2. 相似矩阵一等是等价矩阵,但反之不真例 仍取则与等价若与相似,则存在可逆阵,使得,又,故与不相似3. 相似矩阵未必合同例则取可得,即与相似假设与合同,设则那么
13、整理得,;(矛盾),故与不合同4. 合同矩阵未必相似例 取故与合同又,则与不相似5. 可逆,则有与相似,但反之不真例 显然,有与相似,而不存在逆矩阵1.2 多项式中的反例多项式是代数学中最基本的对象之一,在进一步学习其他数学科目时也能遇到,本章主要讨论数域上的一元多项式,并举出有关反例1定理 如果,那么就能整的组合,即反之不真即能整除的组合,未必能整除每一个例 令 而 , 显然 ,但 定义1.5 数域上次数的多项式称为域上的不可约多项式,如果它不能表示成数域上的两个次数比的次数低的多项式的乘积2不可约多项式,则有或是不可约多项式的限制是有必要的,否则即可举出反例:例 令 显然有 但 ,定义1.
14、6 不可约多项式称为多项式的重因式,如果,而3若不可约多项式是的重因式(),则是的重因式反之不真例 令 则 是的2重因式,但不是的3重因式,事实,就不是的重因式定义1.7 如果一个非零的整系数多项式的系数没有异于的公因子,也就是说,它们是互素的,它就称为一个本原多项式4本原多项式不一定是不可约的例 是本原多项式,但,是可约的5设,是整系数多项式,且是本原的,若,其中是有理系数多项式,则一定是整系数的我们说,限制为本原的条件不可少,否则就可能有不是整系数的例 取,而那么6爱森斯坦判别法:当是一个整系数多项式,存在一个素数使得那么在有理数域上是不可约的但是当找不到这样的素数,我们能不能就说是可约的
15、答案是不能的,如有反例例 令 ,对来说找不到满足条件的素数,但是可约,不可约1.3 线性空间中的反例线性相关性定义1.5 线性空间中向量称为线性相关,如果数域中有个不全为零的数,使1. 不能由线性表示,是否一定线性无关?例 ,明显的是不能由线性表出,然而线性相关2. 若线性无关,则其中任意两个不同的向量必定线性无关,反之如何?即两两线性无关,是否全部线性无关?例 ,这里任意两向量线性无关可是,即线性相关所以,两两线性无关,不一定全部线性无关子空间3. 子空间的直和都是和,而子空间的和未必是直和例 ,是实数域显然 对任意的,只要,就是两种不同的表示方法所以,不是直和1.4 线性变换中的反例1.
16、线性变换把线性相关的向量组变为线性相关的向量组,但反之不真例 变换就把线性无关的向量组变为线性相关的向量组2. 线性变换的乘法不满足交换律 例 在实数域上的线性空间中,线性变换的乘积,而一般说来为单位变换(恒等变换)3. 线性变换乘积的指数法则不成立,即一般来说,例 线性变换取,则即成立4. 相似矩阵有相同的特征多项式,但反之不真例 即有相同的特征的多项式,可是与不相似,这是因为这就是说,只能与相似定义1.6 设是数域上线性空间的线性变换,是的子空间如果中的向量在下的像仍在中,我们就称是的不变子空间,简称子空间5. ,是线性空间的线性变换若,则,都是子空间,同样,是子空间,反之不真例 是数域而
17、 都是线性变换易知 , 都是子空间; , 都是子空间可是 因而第二章 数学分析中的反例数学分析也是数学专业的一门重要基础课之一, 是进一步学习数学其他课程的基础它是一门逻辑性很强的课程,它有许多重要的概念都是用抽象的数学语言来描述的, 在学习过程中很难理解其中含义, 因此在学习中经常使用反例来理解学习中时常出现的错误, 充分理解一些定理和概念这部分对课本中容易出现错误的概念和定理用反例来加深理解和学习2.1 数列中的反例1. 定理3:设,则那么,对于两个发散的数列,是否有:(1)之和发散;(2)之积发散,(3)其商发散?答案是不成立,有反例可以说明例如,(1),因为,则发散的,是发散的但是数列
18、却是收敛的(2),这两个数列都是发散的,但是数列却是收敛的(3),这两个数列都发散,但是是收敛的。2. 定理 有极限存在的数列必有界反之不真,存在反例例 数列 数列在0和2之间跳动,但当时,并不能接近于一个常数,因此极限并不存在3. 定理 单调上升(下降)有上(下)界的数列必有极限存在然而,收敛数列单调有界,是否成立呢?不成立,存在反例:收敛但是不单调的数列例 ,其极限,但是对于任意正整数,都有即,所以,数列并不单调4. 若,反之是否成立?反之不成立,例如,但是不存在5. 若收敛,是否 就收敛?不能断定,存在反例例如,收敛,但是发散6. 若,中一个是收敛数列,一个是发散数列,那么和是否也是发散
19、数列例 取 ,则 ,故和是收敛数列2.2 函数中的反例函数的极限1. 定义2. 14 设在点附近(除点外)有定义, 是一定数若对任意给定的,存在 ,当时, 有 则称是当趋于的极限(1)我们会认为如果在点处有极限, 在就有定义根据定义:在点附近(除点外)有定义,这说明函数 在是否存在极限与函数在处是否有定义无关例 在处虽然无定义,但在处无定义, 但极限是存在的(2)若在处有定义, 但在处的极限与在处的函数值无关例尽管在处有定义,但在时极限不存在(3)在函数极限定义中将改为,是否有?结论是不成立的例 ,则,当时, 总有成立,但2. 如果存在,但不存在,那么不存在6此命题错误,存在反例例因为 不存在
20、,但3. 若函数,则,但反之不真例故不存在函数的连续性1. 定义2.24 设函数在在包含一个开区间有定义,如果则称在是连续的有定义可见,在点连续需要满足下列三个条件4:)在点附近以及点有定义;) 在点的极限存在;) 极限值等于 三个条件任何一个不满足都不能说明连续(1)若在点没有定义例 在点无定义,但是此函数在点不连续(2) 若 在点的极限不存在例 ,不存在,从图像3可看出此函数在点不连续(3)若极限值不等于例 ,从图像2可以看出此函数在点不连续2. 两个连续函数的和一定是连续函数,但是逆命题不成立存在反例例对于任意一个有理数和一个无理数,都有:所以,在区间内处处不连续,然而它在区间内连续3.
21、 两个连续函数之积是连续函数但是逆命题不成立,存在反例例对于任意一个有理数和一个无理数,都有:所以,在区间内处处不连续,然而它在区间内连续2.3 微商与微分中的反例微商1. 一阶微分具有形式不变性,高阶微分是否也具有形式不变性呢?即公式,是否成立?请看下例:设,有又若,则复合函数,故但 所以高阶微分不具有形式不变性2. 定理 若在点可导,则在点连续但如果在点连续,是否在点可导?答案是否定的例 ,它在点连续,但是它在处不可导,因为,故不存在,即不可导微分中值定理1. 定理 若在闭区间上连续,则在上有最大值和最小值,即存在,使得分别是在上有最大值与最小值:函数存在最值,必须要在闭区间上的连续函数才
22、成立例 ,在区间上是连续的,其值域为,不存在最大值和最小值2. 定理(罗尔定理):若在闭区间连续,在开区间可导,且,则在中存在,使得定理中的三个条件缺一不可(1)缺少条件“在闭区间连续”例 ,满足在可导,但也没有,使得,这是因为在不连续(2)缺少条件“在开区间可导”例 ,在区间连续,且,但是不存在,使得,因为在处不可导(3)缺少条件“”例 ,它在区间连续,在可导,但是,显然不存在,使得2.4 微积分中的反例1. 定理(可积函数必有界)若在可积,则在有界有界函数不一定可积例 狄利克雷函数:在是不可积的2. 函数在区间上一致连续,则函数一定连续;但是逆命题不成立例在区间上连续,但是不一致连续,由于
23、,存在,对任意,存在满足,但取则 而 故对,及任意,都存在,使得但这就证明了在不一致连续2.5 级数中的反例数项级数1. 定理 若级数收敛,则一般项趋向于0,即若,并不能断定收敛例如级数,但级数是发散的,因为前项部分和(当)2. 定理 若级数收敛,则收敛但是由级数发散,不能推出发散例 交错级数是收敛的,但是发散的3. 若级数收敛,则级数收敛但反之不真例 级数收敛,但是发散4. 判断下列命题,错的请举出反例:(1)若发散,则不趋于;命题错误例如,发散,但对于(2)若,则收敛;命题错误例如,但是发散(3)若收敛,则收敛;命题错误例如,收敛,但发散(4)若收敛,则收敛命题错误例如,收敛,但发散(5)
24、若收敛,则收敛;命题错误例如,收敛,但发散(6)若收敛,则;命题错误例如,收敛,的一个子列,则有,所以函数项级数1. 定理(逐项求导) 若在有连续的微商,在逐点收敛到,在一致收敛到,则在可导,且事实上,在一致收敛的条件是不可少的,例如函数项级数由于,知在成立,但显然,这是由于在不一致连续的缘故幂级数在学习幂级数中, 我们总认为5:如果幂级数的收敛半径为,那么一定有这是错误的,因为有可能不存在请看下例:取 因为,而收敛所以级数收敛,但故不存在而 , 显然与的收敛半径均为2,故幂级数的收敛半径为2.6 偏导数与全微分中的反例我们把函数在某点连续、存在偏导数以及可微之间的关系简单的总结如下:两个偏导
25、数都连续可微连续逆过来均不成立反例如下:在原点的连续性,可微性,偏导数的连续性?(1),故在原点连续;(2)根据偏导数的定义:则 从不同方向趋于原点的极限不同,故偏导数在原点不连续;同理可得,偏导数在原点不连续(3)有(2)可得,若函数在原点可微,则按可微定义有,是比高阶的无穷小量所以考察极限是否存在下面考察函数的极限:当沿直线趋近于点时,极限为当沿不同的直线趋于原点,所得极限值不同,故的不存在,也就是也不存在,故在原点不可微以上例子说明,函数在一点连续,不一定在这点可微,偏导数在这点也不一定连续致 谢大学四年生活一晃而过,当我写完这篇毕业论文的时候有一种如释重负的感觉,感慨良多首先诚挚的感谢
26、我的论文指导老师,她在忙碌的教学工作中挤出时间来审查、修改我的论文本论文从选题到完成,每一步都是在指导老师的指导下完成的,倾注了老师大量的心血在此,谨向孔老师表示崇高的敬意和衷心的感谢!孔老师扎实的专业知识,严谨的治学态度,精益求精的工作作风,朴实无华、平易近人的人格魅力对我影响深远还有教过我的所有老师们,你们严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;感谢大学四年来陪伴和支持我的朋友们,有了你们的支持、鼓励和帮助,我才能充实并快乐的度过大学四年参考文献1 王萼芳,石生明高等代数(第三版)M北京:高等教育出版社20032 胡崇慧代数中的反例M陕西:科学技术出版社19833 邓东皋,尹小
27、玲数学分析简明教程(第二版)M北京:高等教育出版社2006.124 马昌秀反例在数学分析教学中的应用新疆师范大学学报(自然科学学报)J2012.1229(4):111-1135 翟勇,宋新业无穷级数中的若干典型反例高等数学研究J2007.510(3):34-396 王德印反例在高等数学教学中的作用与应用电大理工J2011.62:47-48 7 张弛不定积分中的问题和反例职大学报J 20082:96-97北方民族大学毕业设计(论文)诚信承诺书学生姓名年级所学专业学号所在学院学生承诺本人慎重承诺和声明:我承诺在毕业设计(论文)过程中严格遵守学校有关规定,在指导教师的安排与指导下独立完成所规定的毕业
28、设计(论文)工作,决不弄虚作假,不请别人代做毕业设计(论文)或抄袭别人的成果。所撰写的毕业论文或毕业设计是在指导老师的指导下自主完成,文中所有引文或引用数据、图表均注解并说明来源,本人愿意为由此引起的后果承担责任。 学生(签名):年 月 日学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下进行的研究工作所取得的成果。尽我所知,除文中已经特别注明引用的内容和致谢的地方外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式注明并表示感谢。本人完全意识到本声明的法律结果由本人承担。学位论文作者(本人签名): 年 月
29、 日学位论文出版授权书本人及导师完全同意中国博士学位论文全文数据库出版章程、中国优秀硕士学位论文全文数据库出版章程(以下简称“章程”),愿意将本人的学位论文提交“中国学术期刊(光盘版)电子杂志社”在中国博士学位论文全文数据库、中国优秀硕士学位论文全文数据库中全文发表和以电子、网络形式公开出版,并同意编入CNKI中国知识资源总库,在中国博硕士学位论文评价数据库中使用和在互联网上传播,同意按“章程”规定享受相关权益。论文密级:公开保密(_年_月至_年_月)(保密的学位论文在解密后应遵守此协议)作者签名:_ 导师签名:_年_月_日 _年_月_日独 创 声 明本人郑重声明:所呈交的毕业设计(论文),是
30、本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。尽我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本声明的法律后果由本人承担。作者签名: 二一年九月二十日毕业设计(论文)使用授权声明本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(
31、论文)的部分或全部内容,允许他人依法合理使用。(保密论文在解密后遵守此规定)作者签名: 二一年九月二十日致 谢时间飞逝,大学的学习生活很快就要过去,在这四年的学习生活中,收获了很多,而这些成绩的取得是和一直关心帮助我的人分不开的。首先非常感谢学校开设这个课题,为本人日后从事计算机方面的工作提供了经验,奠定了基础。本次毕业设计大概持续了半年,现在终于到结尾了。本次毕业设计是对我大学四年学习下来最好的检验。经过这次毕业设计,我的能力有了很大的提高,比如操作能力、分析问题的能力、合作精神、严谨的工作作风等方方面面都有很大的进步。这期间凝聚了很多人的心血,在此我表示由衷的感谢。没有他们的帮助,我将无法
32、顺利完成这次设计。首先,我要特别感谢我的知道郭谦功老师对我的悉心指导,在我的论文书写及设计过程中给了我大量的帮助和指导,为我理清了设计思路和操作方法,并对我所做的课题提出了有效的改进方案。郭谦功老师渊博的知识、严谨的作风和诲人不倦的态度给我留下了深刻的印象。从他身上,我学到了许多能受益终生的东西。再次对周巍老师表示衷心的感谢。其次,我要感谢大学四年中所有的任课老师和辅导员在学习期间对我的严格要求,感谢他们对我学习上和生活上的帮助,使我了解了许多专业知识和为人的道理,能够在今后的生活道路上有继续奋斗的力量。另外,我还要感谢大学四年和我一起走过的同学朋友对我的关心与支持,与他们一起学习、生活,让我
33、在大学期间生活的很充实,给我留下了很多难忘的回忆。最后,我要感谢我的父母对我的关系和理解,如果没有他们在我的学习生涯中的无私奉献和默默支持,我将无法顺利完成今天的学业。四年的大学生活就快走入尾声,我们的校园生活就要划上句号,心中是无尽的难舍与眷恋。从这里走出,对我的人生来说,将是踏上一个新的征程,要把所学的知识应用到实际工作中去。回首四年,取得了些许成绩,生活中有快乐也有艰辛。感谢老师四年来对我孜孜不倦的教诲,对我成长的关心和爱护。学友情深,情同兄妹。四年的风风雨雨,我们一同走过,充满着关爱,给我留下了值得珍藏的最美好的记忆。在我的十几年求学历程里,离不开父母的鼓励和支持,是他们辛勤的劳作,无私的付出,为我创造良好的学习条件,我才能顺利完成完成学业,感激他们一直以来对我的抚养与培育。最后,我要特别感谢我的导师赵达睿老师、和研究生助教熊伟丽老师。是他们在我毕业的最后关头给了我们巨大的帮助与鼓励,给了我很多解决问题的思路,在此表示衷心的感激。老师们认真负责的工作态度,严谨的治学精神和深厚的理论水平都使我收益匪浅。他无论在理论上还是在实践中,都给与我很大的帮助,使我得到不少的提高这对于我以后的工作和学习都有一种巨大的帮助,感谢他耐心的辅导。在论文的撰写过程中老师们给予我很大的帮助,帮助解决了不少的难点,使得论文能够及时完成,这里一并表示真诚的感谢。