初中几何辅助线做法大全(24页).doc

上传人:1595****071 文档编号:37017679 上传时间:2022-08-29 格式:DOC 页数:24 大小:1.58MB
返回 下载 相关 举报
初中几何辅助线做法大全(24页).doc_第1页
第1页 / 共24页
初中几何辅助线做法大全(24页).doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《初中几何辅助线做法大全(24页).doc》由会员分享,可在线阅读,更多相关《初中几何辅助线做法大全(24页).doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-初中几何辅助线做法大全-第 - 24 - 页 线、角、相交线、平行线规律1.如果平面上有n(n2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n1)条.规律2.平面上的n条直线最多可把平面分成n(n+1)+1个部分.规律3.如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n1)条.规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.例:如图,B在线段AC上,M是AB的中点,N是BC的中点.求证:MN =AC证明:M是AB的中点,N是BC的中点AM = BM = AB ,BN = CN = BCMN = MB+BN =

2、 AB + BC = (AB + BC)MN =AC练习:1.如图,点C是线段AB上的一点,M是线段BC的中点.求证:AM = (AB + BC) 2.如图,点B在线段AC上,M是AB的中点,N是AC的中点.求证:MN = BC 3.如图,点B在线段AC上,N是AC的中点,M是BC的中点.求证:MN = AB 规律5.有公共端点的n条射线所构成的交点的个数一共有n(n1)个.规律6.如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n1)个.规律7. 如果平面内有n条直线都经过同一点,则可构成n(n1)对对顶角.规律8.平面上若有n(n3)个点,任意三个点不在同一直线上,过任意三

3、点作三角形一共可作出n(n1)(n2)个.规律9.互为邻补角的两个角平分线所成的角的度数为90o.规律10.平面上有n条直线相交,最多交点的个数为n(n1)个.规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.例:如图,以下三种情况请同学们自己证明.规律13.已知ABDE,如图,规律如下:规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半.例:已知,BE、DE分别平分ABC和ADC,若A = 45o,C = 55o,求E的度数.解:AABE

4、 =EADE CCDE =ECBE 得AABECCDE =EADEECBEBE平分ABC、DE平分ADC,ABE =CBE,CDE =ADE2E =ACE = (AC)A =45o,C =55o,E =50o 三角形部分规律15在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.例:如图,已知D、E为ABC内两点,求证:ABACBDDECE. 证法(一):将DE向两边延长,分别交AB、AC于M、N 在AMN中, AM ANMDDENE 在BDM中,MBMDBD 在CEN中,CNNE

5、CE 得AMANMBMDCNNEMDDENEBDCEABACBDDECE证法(二)延长BD交AC于F,延长CE交BF于G,在ABF和GFC和GDE中有,ABAFBDDGGFGFFCGECEDGGEDE有ABAFGFFCDGGEBDDGGFGECEDEABACBDDECE注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题.练习:已知:如图P为ABC内任一点, 求证:(ABBCAC)PAPBPCABBCAC规律16三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半.例:如图,已知BD为ABC的角平分线

6、,CD为ABC 的外角ACE的平分线,它与BD的延长线交于D.求证:A = 2D证明:BD、CD分别是ABC、ACE的平分线 ACE =21, ABC =22A = ACE ABCA = 2122又D =12A =2D规律17. 三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半.例:如图,BD、CD分别平分ABC、ACB, 求证:BDC = 90oA证明:BD、CD分别平分ABC、ACB A2122 = 180o 2(12)= 180oA BDC = 180o(12) (12) = 180oBDC 把式代入式得 2(180oBDC)= 180oA 即:360o2BDC =18

7、0oA 2BDC = 180oA BDC = 90oA规律18. 三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半.例:如图,BD、CD分别平分EBC、FCB, 求证:BDC = 90oA证明:BD、CD分别平分EBC、FCBEBC = 21、FCB = 2221 =AACB 22 =AABC 得2(12)= AABCACBA2(12)= 180oA(12)= 90oABDC = 180o(12)BDC = 180o(90oA)BDC = 90oA规律19. 从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.例:已知,如图,在ABC中,

8、CB, ADBC于D, AE平分BAC.求证:EAD = (CB)证明:AE平分BACBAE =CAE =BACBAC =180o(BC)EAC = 180o(BC)ADBCDAC = 90o CEAD = EACDACEAD = 180o(BC)(90oC) = 90o(BC)90oC = (CB)如果把AD平移可以得到如下两图,FDBC其它条件不变,结论为EFD = (CB).注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,

9、可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D为ABC内任一点,求证:BDCBAC证法(一):延长BD交AC于E,BDC是EDC 的外角,BDCDEC同理:DECBACBDCBAC证法(二):连结AD,并延长交BC于FBDF是ABD的外角,BDFBAD同理CDFCADBDFCDFBADCAD即:BDCBAC规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形. 例:已知,如图,AD为ABC的中线且1 = 2,3 = 4,求证:BECFEF证明:在DA上截取DN = DB,连结NE、NF,则DN = DC 在

10、BDE和NDE中,DN = DB1 = 2ED = EDBDENDEBE = NE同理可证:CF = NF在EFN中,ENFNEFBECFEF规律22. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD为ABC的中线,且1 = 2,3 = 4,求证:BECFEF证明:延长ED到M,使DM = DE,连结CM、FMBDE和CDM中, BD = CD1 = 5ED = MDBDECDMCM = BE又1 = 2,3 = 4 123 4 = 180o3 2 = 90o即EDF = 90oFDM = EDF = 90oEDF和MDF中ED = MDFDM = EDFDF

11、 = DFEDFMDFEF = MF在CMF中,CFCM MFBECFEF(此题也可加倍FD,证法同上)规律23. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD为ABC的中线,求证:ABAC2AD证明:延长AD至E,使DE = AD,连结BEAD为ABC的中线BD = CD在ACD和EBD中BD = CD 1 = 2AD = EDACDEBDABE中有ABBEAEABAC2AD规律24.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一

12、时用此种方法:abab = cab = cd例:已知,如图,在ABC中,ABAC,1 = 2,P为AD上任一点,求证:ABACPBPC证明:截长法:在AB上截取AN = AC,连结PN在APN和APC中,AN = AC1 = 2AP = APAPNAPCPC = PNBPN中有PBPCBNPBPCABAC补短法:延长AC至M,使AM = AB,连结PM在ABP和AMP中AB = AM 1 = 2AP = APABPAMPPB = PM又在PCM中有CM PMPCABACPBPC练习:1.已知,在ABC中,B = 60o,AD、CE是ABC的角平分线,并且它们交于点O求证:AC = AECD2.

13、已知,如图,ABCD1 = 2 ,3 = 4. 求证:BC = ABCD 规律25.证明两条线段相等的步骤:观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。若图中没有全等三角形,可以把求证线段用和它相等的线段代换,再证它们所在的三角形全等.如果没有相等的线段代换,可设法作辅助线构造全等三角形.例:如图,已知,BE、CD相交于F,B = C,1 = 2,求证:DF = EF 证明:ADF =B3 AEF = C4又3 = 4B = CADF = AEF在ADF和AEF中ADF = AEF1 = 2 AF = AFADFAEFDF = EF规律26.在一个图形中,有多个垂直关系时,

14、常用同角(等角)的余角相等来证明两个角相等.例:已知,如图RtABC中,AB = AC,BAC = 90o,过A作任一条直线AN,作BDAN于D,CEAN于E,求证:DE = BDCE证明:BAC = 90o, BDAN12 = 90o 13 = 90o2 = 3BDAN CEANBDA =AEC = 90o在ABD和CAE中,BDA =AEC2 = 3AB = ACABDCAEBD = AE且AD = CEAEAD = BDCEDE = BDCE规律27.三角形一边的两端点到这边的中线所在的直线的距离相等.例:AD为ABC的中线,且CFAD于F,BEAD的延长线于E求证:BE = CF 证明

15、:(略)规律28.条件不足时延长已知边构造三角形.例:已知AC = BD,ADAC于A,BCBD于B求证:AD = BC证明:分别延长DA、CB交于点EADAC BCBDCAE = DBE = 90o在DBE和CAE中DBE =CAEBD = ACE =EDBECAEED = EC,EB = EAEDEA = EC EBAD = BC规律29.连接四边形的对角线,把四边形问题转化成三角形来解决问题.例:已知,如图,ABCD,ADBC 求证:AB = CD 证明:连结AC(或BD)ABCD,ADBC1 = 2 在ABC和CDA中,1 = 2 AC = CA3 = 4 ABCCDAAB = CD练

16、习:已知,如图,AB = DC,AD = BC,DE = BF,求证:BE = DF规律30.有和角平分线垂直的线段时,通常把这条线段延长。可归结为“角分垂等腰归”.例:已知,如图,在RtABC中,AB = AC,BAC = 90o,1 = 2 ,CEBD的延长线于E求证:BD = 2CE证明:分别延长BA、CE交于FBECFBEF =BEC = 90o在BEF和BEC中1 = 2 BE = BEBEF =BECBEFBECCE = FE =CFBAC = 90o , BECFBAC = CAF = 90o 1BDA = 90o1BFC = 90oBDA = BFC在ABD和ACF中BAC =

17、 CAFBDA = BFCAB = ACABDACFBD = CFBD = 2CE练习:已知,如图,ACB = 3B,1 =2,CDAD于D,求证:ABAC = 2CD规律31.当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三角形.例:已知,如图,AC、BD相交于O,且AB = DC,AC = BD,求证:A = D证明:(连结BC,过程略)规律32.当证题缺少线段相等的条件时,可取某条线段中点,为证题提供条件.例:已知,如图,AB = DC,A = D 求证:ABC = DCB 证明:分别取AD、BC中点N、M,连结NB、NM、NC(过程略)规律33.有角平分线时,常过角平

18、分线上的点向角两边做垂线,利用角平分线上的点到角两边距离相等证题.例:已知,如图,1 = 2 ,P为BN上一点,且PDBC于D,ABBC = 2BD,求证:BAPBCP = 180o证明:过P作PEBA于EPDBC,1 = 2 PE = PD在RtBPE和RtBPD中BP = BPPE = PDRtBPERtBPDBE = BDABBC = 2BD,BC = CDBD,AB = BEAEAE = CDPEBE,PDBCPEB =PDC = 90o在PEA和PDC中PE = PDPEB =PDCAE =CDPEAPDCPCB = EAPBAPEAP = 180oBAPBCP = 180o练习:1

19、.已知,如图,PA、PC分别是ABC外角MAC与NCA的平分线,它们交于P,PDBM于M,PFBN于F,求证:BP为MBN的平分线2. 已知,如图,在ABC中,ABC =100o,ACB = 20o,CE是ACB的平分线,D是AC上一点,若CBD = 20o,求CED的度数。规律34.有等腰三角形时常用的辅助线作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BDAC于D,求证:BAC = 2DBC证明:(方法一)作BAC的平分线AE,交BC于E,则1 = 2 = BAC又AB = ACAEBC2ACB = 90oBDACDBCACB = 90o2 = DBCBAC = 2DB

20、C(方法二)过A作AEBC于E(过程略)(方法三)取BC中点E,连结AE(过程略)有底边中点时,常作底边中线例:已知,如图,ABC中,AB = AC,D为BC中点,DEAB于E,DFAC于F,求证:DE = DF证明:连结AD.D为BC中点,BD = CD又AB =ACAD平分BACDEAB,DFACDE = DF将腰延长一倍,构造直角三角形解题例:已知,如图,ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EFBC证明:延长BE到N,使AN = AB,连结CN,则AB = AN = ACB = ACB, ACN = ANCBACBACNANC = 180

21、o2BCA2ACN = 180oBCAACN = 90o即BCN = 90oNCBCAE = AFAEF = AFE又BAC = AEF AFEBAC = ACN ANCBAC =2AEF = 2ANCAEF = ANCEFNCEFBC常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F求证:DF = EF证明:(证法一)过D作DNAE,交BC于N,则DNB = ACB,NDE = E,AB = AC,B = ACBB =DNBBD = DN又BD = CE DN = EC在DNF和ECF中1 =

22、2NDF =EDN = EC DNFECFDF = EF(证法二)过E作EMAB交BC延长线于M,则EMB =B(过程略)常过一腰上的某一已知点做底的平行线例:已知,如图,ABC中,AB =AC,E在AC上,D在BA延长线上,且AD = AE,连结DE求证:DEBC证明:(证法一)过点E作EFBC交AB于F,则AFE =BAEF =CAB = ACB =CAFE =AEFAD = AEAED =ADE又AFEAEFAEDADE = 180o2AEF2AED = 90o 即FED = 90o DEFE又EFBCDEBC(证法二)过点D作DNBC交CA的延长线于N,(过程略)(证法三)过点A作AM

23、BC交DE于M,(过程略)常将等腰三角形转化成特殊的等腰三角形-等边三角形例:已知,如图,ABC中,AB = AC,BAC = 80o ,P为形内一点,若PBC = 10o PCB = 30o 求PAB的度数.解法一:以AB为一边作等边三角形,连结CE则BAE =ABE = 60oAE = AB = BEAB = ACAE = AC ABC =ACBAEC =ACEEAC =BACBAE = 80o 60o = 20oACE = (180oEAC)= 80oACB= (180oBAC)= 50oBCE =ACEACB = 80o50o = 30oPCB = 30oPCB = BCEABC =A

24、CB = 50o, ABE = 60oEBC =ABEABC = 60o50o =10oPBC = 10oPBC = EBC在PBC和EBC中PBC = EBCBC = BCPCB = BCEPBCEBCBP = BEAB = BEAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP)= 70o解法二:以AC为一边作等边三角形,证法同一。解法三:以BC为一边作等边三角形BCE,连结AE,则EB = EC = BC,BEC =EBC = 60oEB = ECE在BC的中垂线上同理A在BC的中垂线上EA所在的直线是BC的中垂线EABCAEB

25、 = BEC = 30o =PCB由解法一知:ABC = 50oABE = EBCABC = 10o =PBCABE =PBC,BE = BC,AEB =PCBABEPBCAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP) = (180o40o)= 70o规律35.有二倍角时常用的辅助线构造等腰三角形使二倍角是等腰三角形的顶角的外角例:已知,如图,在ABC中,1 = 2,ABC = 2C,求证:ABBD = AC证明:延长AB到E,使BE = BD,连结DE则BED = BDEABD =EBDEABC =2EABC = 2CE =

26、C 在AED和ACD中E = C1 = 2AD = ADAEDACDAC = AEAE = ABBEAC = ABBE即ABBD = AC平分二倍角例:已知,如图,在ABC中,BDAC于D,BAC = 2DBC求证:ABC = ACB证明:作BAC的平分线AE交BC于E,则BAE = CAE = DBCBDACCBD C = 90oCAEC= 90o AEC= 180oCAEC= 90oAEBCABCBAE = 90oCAEC= 90oBAE = CAEABC = ACB加倍小角例:已知,如图,在ABC中,BDAC于D,BAC = 2DBC求证:ABC = ACB证明:作FBD =DBC,BF

27、交AC于F(过程略)规律36.有垂直平分线时常把垂直平分线上的点与线段两端点连结起来.例:已知,如图,ABC中,AB = AC,BAC = 120o,EF为AB的垂直平分线,EF交BC于F,交AB于E求证:BF =FC证明:连结AF,则AF = BFB =FABAB = ACB =CBAC = 120oB =CBAC =(180oBAC) = 30oFAB = 30oFAC =BACFAB = 120o30o =90o又C = 30oAF = FCBF =FC练习:已知,如图,在ABC中,CAB的平分线AD与BC的垂直平分线DE交于点D,DMAB于M,DNAC延长线于N求证:BM = CN规律

28、37. 有垂直时常构造垂直平分线.例:已知,如图,在ABC中,B =2C,ADBC于D求证:CD = ABBD证明:(一)在CD上截取DE = DB,连结AE,则AB = AEB =AEBB = 2CAEB = 2C又AEB = CEACC =EACAE = CE又CD = DECECD = BDAB(二)延长CB到F,使DF = DC,连结AF则AF =AC(过程略)规律38.有中点时常构造垂直平分线.例:已知,如图,在ABC中,BC = 2AB, ABC = 2C,BD = CD求证:ABC为直角三角形证明:过D作DEBC,交AC于E,连结BE,则BE = CE,C =EBCABC = 2

29、CABE =EBCBC = 2AB,BD = CDBD = AB在ABE和DBE中AB = BDABE =EBCBE = BEABEDBEBAE = BDEBDE = 90oBAE = 90o即ABC为直角三角形规律39.当涉及到线段平方的关系式时常构造直角三角形,利用勾股定理证题.例:已知,如图,在ABC中,A = 90o,DE为BC的垂直平分线求证:BE2AE2 = AC2证明:连结CE,则BE = CEA = 90o AE2AC2 = EC2AE2AC2= BE2BE2AE2 = AC2练习:已知,如图,在ABC中,BAC = 90o,AB = AC,P为BC上一点求证:PB2PC2=

30、2PA2规律40.条件中出现特殊角时常作高把特殊角放在直角三角形中.例:已知,如图,在ABC中,B = 45o,C = 30o,AB =,求AC的长. 解:过A作ADBC于DBBAD = 90o,B = 45o,B = BAD = 45o,AD = BDAB2 = AD2BD2,AB =AD = 1C = 30o,ADBCAC = 2AD = 2四边形部分规律41.平行四边形的两邻边之和等于平行四边形周长的一半.例:已知,ABCD的周长为60cm,对角线AC、BD相交于点O,AOB的周长比BOC的周长多8cm,求这个四边形各边长.解:四边形ABCD为平行四边形AB = CD,AD = CB,A

31、O = COABCDDACB = 60AOABOB(OBBCOC) = 8ABBC = 30,ABBC =8AB = CD = 19,BC = AD = 11答:这个四边形各边长分别为19cm、11cm、19cm、11cm.规律42.平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.(例题如上)规律43.有平行线时常作平行线构造平行四边形例:已知,如图,RtABC,ACB = 90o,CDAB于D,AE平分CAB交CD于F,过F作FHAB交BC于H求证:CE = BH证明:过F作FPBC交AB于P,则四边形FPBH为平行四边形B =FPA,BH = FPACB = 90o

32、,CDAB5CAB = 45o,BCAB = 90o5 =B5 =FPA又1 =2,AF = AFCAFPAFCF = FP4 =15,3 =2B3 =4CF = CECE = BH练习:已知,如图,ABEFGH,BE = GC求证:AB = EFGH规律44.有以平行四边形一边中点为端点的线段时常延长此线段. 例:已知,如图,在ABCD中,AB = 2BC,M为AB中点求证:CMDM证明:延长DM、CB交于N四边形ABCD为平行四边形AD = BC,ADBCA = NBA ADN =N又AM = BMAMDBMNAD = BNBN = BCAB = 2BC,AM = BMBM = BC =

33、BN1 =2,3 =N123N = 180o,13 = 90oCMDM规律45.平行四边形对角线的交点到一组对边距离相等.如图:OE = OF规律46.平行四边形一边(或这边所在的直线)上的任意一点与对边的两个端点的连线所构成的三角形的面积等于平行四边形面积的一半.如图:SBEC = SABCD规律47.平行四边形内任意一点与四个顶点的连线所构成的四个三角形中,不相邻的两个三角形的面积之和等于平行四边形面积的一半.如图:SAOB SDOC = SBOCSAOD = SABCD规律48.任意一点与同一平面内的矩形各点的连线中,不相邻的两条线段的平方和相等.如图:AO2OC2 = BO2 DO2规

34、律49.平行四边形四个内角平分线所围成的四边形为矩形.如图:四边形GHMN是矩形(规律45规律49请同学们自己证明)规律50.有垂直时可作垂线构造矩形或平行线.例:已知,如图,E为矩形ABCD的边AD上一点,且BE = ED,P为对角线BD上一点,PFBE于F,PGAD于G求证:PFPG = AB证明:证法一:过P作PHAB于H,则四边形AHPG为矩形AH = GP PHADADB =HPBBE = DEEBD = ADBHPB =EBD又PFB =BHP = 90oPFBBHPHB = FPAHHB = PGPF即AB = PGPF证法二:延长GP交BC于N,则四边形ABNG为矩形,(证明略

35、)规律51.直角三角形常用辅助线方法:作斜边上的高例:已知,如图,若从矩形ABCD的顶点C作对角线BD的垂线与BAD的平分线交于点E求证:AC = CE证明:过A作AFBD,垂足为F,则AFEGFAE = AEG四边形ABCD为矩形BAD = 90o OA = ODBDA =CADAFBDABDADB = ABDBAF = 90oBAF =ADB =CADAE为BAD的平分线BAE =DAEBAEBAF =DAEDAC即FAE =CAECAE =AEGAC = EC作斜边中线,当有下列情况时常作斜边中线:有斜边中点时例:已知,如图,AD、BE是ABC的高, F是DE的中点,G是AB的中点求证:

36、GFDE证明:连结GE、GDAD、BE是ABC的高,G是AB的中点GE = AB,GD = ABGE = GDF是DE的中点GFDE有和斜边倍分关系的线段时例:已知,如图,在ABC中,D是BC延长线上一点,且DABA于A,AC = BD求证:ACB = 2B证明:取BD中点E,连结AE,则AE = BE = BD1 =BAC = BDAC = AEACB =2 2 =1B2 = 2BACB = 2B规律52.正方形一条对角线上一点到另一条对角线上的两端距离相等.例:已知,如图,过正方形ABCD对角线BD上一点P,作PEBC于E,作PFCD于F 求证:AP = EF 证明:连结AC 、PC四边形

37、ABCD为正方形BD垂直平分AC,BCD = 90oAP = CPPEBC,PFCD,BCD = 90o四边形PECF为矩形PC = EFAP = EF规律53.有正方形一边中点时常取另一边中点.例:已知,如图,正方形ABCD中,M为AB的中点,MNMD,BN平分CBE并交MN于N求证:MD = MN证明:取AD的中点P,连结PM,则DP = PA =AD四边形ABCD为正方形AD = AB, A =ABC = 90o1AMD = 90o,又DMMN2AMD = 90o1 =2M为AB中点AM = MB = ABDP = MB AP = AMAPM =AMP = 45oDPM =135oBN平

38、分CBECBN = 45oMBN =MBCCBN = 90o45o= 135o即DPM =MBNDPMMBNDM = MN注意:把M改为AB上任一点,其它条件不变,结论仍然成立。练习:已知,Q为正方形ABCD的CD边的中点,P为CQ上一点,且AP = PCBC求证:BAP = 2QAD规律54.利用正方形进行旋转变换 旋转变换就是当图形具有邻边相等这一特征时,可以把图形的某部分绕相等邻边的公共端点旋转到另一位置的引辅助线方法. 旋转变换主要用途是把分散元素通过旋转集中起来,从而为证题创造必要的条件. 旋转变换经常用于等腰三角形、等边三角形及正方形中.例:已知,如图,在ABC中,AB = AC,BAC = 90o,D为BC边上任一点求证:2AD2 = BD2CD2证明:把ABD绕点A逆时针旋转90o得ACEBD = CE B = ACEBAC = 90oDAE = 90oDE2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁