《北师大版八年级数学上期末复习提纲(5页).doc》由会员分享,可在线阅读,更多相关《北师大版八年级数学上期末复习提纲(5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-北师大版八年级数学上期末复习提纲-第 - 5 - 页北师大版八年级数学上期末复习提纲 姓名 第一章 勾股定理1勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。2勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。3勾股定理逆定理:如果三角形的三边长,满足,那么这个三角形是直角三角形。满足的三个正整数称为勾股数。第二章 实数1平方根和算术平方根的概念及其性质:(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。(2)性质:当0时,0;当时,无意义;。2立方根的概念及其性质:实数无理数(无限不循环小数)有理数正分数负分数正整数0负整数(有限或无限循环性数)整数 分数正
2、无理数负无理数(1)概念:若,那么是的立方根,记作:;(2)性质:;3实数的概念及其分类:(1)概念:实数是有理数和无理数的统称; (2)分类:按定义分为有理数和无理数;有理数可分为整数和分数;实数按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。4与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正
3、好可以被实数填满。5算术平方根的运算律: (0,0); (0,0)。第三章 图形的平移与旋转1平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。 2旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等
4、。3作平移图与旋转图。第四章 四边形性质的探索1多边形的分类:特殊菱形矩形特殊正方形多边形三角形等腰三角形、直角三角形四边形特殊梯形特殊等腰梯形边数多于4的多边形特殊正多边形平行四边形特殊2平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。两组对边分别平行的四边形叫做平行四边形。两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。推论:夹在两条平行线间的平行线段相等
5、。(2)菱形:一组邻边相等的平行四边形叫做菱形。菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边都相等的四边形是菱形;对角线互相平分且垂直的四边形是菱形。菱形的面积等于两条对角线乘积的一半(面积计算,即S 菱形=L1.L2/2)。(3)矩形:有一个内角是直角的平行四边形叫做矩形。矩形的对角线相等;四个角都是直角。有一个角是直角的平行四边形是矩形。对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形。直角三角形斜边上的中线等于斜边长的一半; 在直角三角形中30所对的直角边是斜边的一半。(4)正方形:一
6、组邻边相等的矩形叫做正方形。正方形具有平行四边形、菱形、矩形的一切性质。正方形的四个角都是直角,四条边都相等,正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。(5)等腰梯形:同一底上的两个内角相等,对角线相等。两腰相等的梯形是等腰梯形;同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形。经过梯形一腰的中点与底平行的直线,必平分另一腰 ; 经过三角形一边的中点与另一边平行的直线,必平分第三边 。重要辅助线:常连结四边形的对角线;梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。(6)三角形中位线定理 三角形的中位
7、线平行于第三边,并且等于它的一半。(7)梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)2,S=Lh3多边形的内角和=(n-2).180;多边形的外角和都等于;正n边形的每一个内角都等于(n-2).180/n。正三角形面积a24 (a表示边长)4中心对称图形:在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。中心对称的性质:关于中心对称的两个图形是全等的;关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 。第五章
8、 位置的确定1直角坐标系及坐标的相关知识。2点的坐标间的关系:如果点A、B横坐标相同,则轴;如果点A、B纵坐标相同,则轴。3将图形的纵坐标保持不变,横坐标变为原来的倍,所得到的图形与原图形关于轴对称;将图形的横坐标保持不变,纵坐标变为原来的倍,所得到的图形与原图形关于轴对称;将图形的横、纵坐标都变为原来的倍,所得到的图形与原图形关于原点成中心对称。第六章 一次函数1一次函数定义:若两个变量间的关系可以表示成(为常数,)的形式,则称是的一次函数。当时称是的正比例函数。正比例函数是特殊的一次函数。2作一次函数的图象:列表取点、描点、连线,标出对应的函数关系式。3正比例函数图象性质:经过;0时,经过
9、一、三象限;0时,经过二、四象限。4一次函数图象性质:(1)当0时,随的增大而增大,图象呈上升趋势;当0时,随的增大而减小,图象呈下降趋势。(2)直线与轴的交点为,与轴的交点为 。(3)在一次函数中:0,0时函数图象经过一、二、三象限;0,0时函数图象经过一、三、四象限;0,0时函数图象经过一、二、四象限;0,0时函数图象经过二、三、四象限。(4)在两个一次函数中,当它们的值相等时,其图象平行;当它们的值不等时,其图象相交;当它们的值乘积为时,其图象垂直。4已经任意两点求一次函数的表达式、根据图象求一次函数表达式。5运用一次函数的图象解决实际问题。第七章 二元一次方程组1二元一次方程及二元一次
10、方程组的定义。2解方程组的基本思路是消元,消元的基本方法是:代入消元法;加减消元法;图象法。3方程组解应用题的关键是找等量关系。4解应用题时,按设、列、解、答 四步进行。5每个二元一次方程都可以看成一次函数,求二元一次方程组的解,可看成求两个一次函数图象的交点。第八章 数据的代表1算术平均数与加权平均数的区别与联系:算术平均数是加权平均数的一种特殊情况,(它特殊在各项的权相等),当实际问题中,各项的权不相等时,计算平均数时就要采用加权平均数,当各项的权相等时,计算平均数就要采用算术平均数。2中位数和众数:中位数指的是n个数据按大小顺序(从大到小或从小到大)排列,处在最中间位置的一个数据(或最中
11、间两个数据的平均数)。众数指的是一组数据中出现次数最多的那个数据。一次函数及图象复习要点1、规定了原点、正方向和单位长度的直线叫数轴。数轴上的点与实数一一对应。数轴上的点A、B的坐标为x1、x2, 则ABx1-x2 。2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。坐标平面内的点与有序实数对(x,y)一一对应。3、坐标轴上的点不属于任何象限。x轴上的点纵坐标y0;y轴上的点横坐标x0。第一象限内的点x0,y0;第二象限内的点x0;第三象限内的点x0,y0,y0时,图象过一、三象限,y随x的增大而增大;从左至右图象是上升的(左低右高);(3)当k0时,与y轴的交点(0,b)在正半轴;当
12、b0,k0,b0)xoy(k0)xoy(k0,b0)xoy(k0,b0,k0,图象的四种情况:四边形1、四边形的内角和定理:四边形内角和等于360;2、多边形内角和定理:n边形的内角和等于(n2)180;3、多边形的外角和定理:任意多边形的外角和等于360;4、n边形对角线条数公式:n(n3)/2(n3);5、中心对称:把一个图形绕某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称。6、中心对称图形:把一个图形绕某一个点旋转180,如果它能够和原来的图形互相重合,那么就说这个图形叫做中心对称图形。平行四边形是中心对称图形。7、中心对称的性质:关于中心对称的两个图形
13、是全等形;关于中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分。定义性质判定边角对角线面积对称性轴对称中心对称8、四边形一般性质(角)内角和:360;外角和:360顺次连结各边中点得平行四边形。推论1:顺次连结对角线相等的四边形各边中点得菱形。推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。2特殊四边形研究四边形的一般方法: 定义性质判定平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定 判定步骤:四边形平行四边形矩形正方形 菱形四边形平行四边形矩形菱形正方形互相平分相等且互相垂直垂直相等相等垂直相等且互相平分互相垂直平分互相垂直平分且相等(4)对角线的纽
14、带作用:八、(一)二元一次方程组 1、二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是(2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。5、二元一次方组组的解法(1)代入法(2)加减法6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。常用的相等关系1 行程问题(匀速运动)ABC甲乙相遇处基本关系:s=vt相遇问题(同时出发):+=;ABC甲乙(相遇处)追及问题(同时出发):乙AB(甲)(相遇处)若甲出发t小时后,乙才出发,而后在B处追上甲,则水中航行:;2.配料问题:溶质=溶液浓度 溶液=溶质+溶剂3增长率问题: 4工程问题:基本关系:工作量=工作效率工作时间(常把工作量看着单位“1”)。5几何问题:常用勾股定理,几何体的面积、体积公式等。