【创新设计】(江苏专用)2017年度版高等考试数学一轮深刻复习收集探究课二课程软件理人教A版.ppt

上传人:小** 文档编号:3699775 上传时间:2020-10-17 格式:PPT 页数:32 大小:1.90MB
返回 下载 相关 举报
【创新设计】(江苏专用)2017年度版高等考试数学一轮深刻复习收集探究课二课程软件理人教A版.ppt_第1页
第1页 / 共32页
【创新设计】(江苏专用)2017年度版高等考试数学一轮深刻复习收集探究课二课程软件理人教A版.ppt_第2页
第2页 / 共32页
点击查看更多>>
资源描述

《【创新设计】(江苏专用)2017年度版高等考试数学一轮深刻复习收集探究课二课程软件理人教A版.ppt》由会员分享,可在线阅读,更多相关《【创新设计】(江苏专用)2017年度版高等考试数学一轮深刻复习收集探究课二课程软件理人教A版.ppt(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高考导航函数与导数作为高中数学的核心内容,常常与其他知识结合起来,形成层次丰富的各类综合题,高考对导数计算的要求贯穿于与导数有关的每一道题目之中,多涉及三次函数、指数函数、对数函数、正弦函数、余弦函数以及由这些函数复合而成的一些函数的求导问题;函数的单调性、极值、最值均是高考命题的重点内容,在填空、解答题中都有涉及,试题难度不大.运用导数解决实际问题是函数应用的延伸,由于传统数学应用题的位置已经被概率解答题占据,所以在历年高考题中很少出现单独考查函数应用题的问题,但结合其他知识综合考查用导数求解最值的问题在每年的高考试题中都有体现.,热点一利用导数研究函数的单调性、极值与最值,以含参数的函数为

2、载体,结合导数的基本概念、几何意义等求解参数的值,或结合具体函数,求其单调区间、极值、最值或利用函数的单调性、极值与最值求解参数的取值范围等都是较为常见的命题方式,此类题难度中等,正确地求出参数的值是关键.,【例1】 (满分12分)(2015全国卷)已知函数f(x)ln xa(1x).,(1)讨论f(x)的单调性; (2)当f(x)有最大值,且最大值大于2a2时,求a的取值范围.,先求f(x)的定义域x(0,),否则扣1分. 对a分两种情况讨论. 不要漏掉a0,f(x)的最值情况,否则扣1分. 构造函数g(a),并注意观察g(1)0.,第一步:求函数f(x)的定义域(根据已知函数解析式确定).

3、 第二步:求函数f(x)的导数f(x). 第三步:根据f(x)0的零点是否存在或零点的大小对参数分类讨论. 第四步:求解(令f(x)0或令f(x)0). 第五步:下结论.,求含参函数f(x)的单调区间的一般步骤,探究提高求解此类问题的关键在于正确理解最值的求解、判断的方法,将其转化为函数的单调性问题求解,对于由函数的极值求解含参问题要注意结合导函数图象的性质进行分析,函数有极值点,则其导函数的图象必须穿过x轴,而若导函数的图象与x轴有公共点,则该函数不一定有极值点.,【训练1】 (2015苏州调研)已知函数f(x)exa(x1),其中aR,e是自然对数的底数.,(1)当a1时,求函数f(x)在

4、点(1,f(1)处的切线方程; (2)讨论函数f(x)的单调性,并写出相应的单调区间; (3)已知bR,若函数f(x)b对任意xR都成立,求ab的最大值.,解(1)当a1时,f(x)ex1,f(1)e1,f(1)e, 函数f(x)在点(1,f(1)处的切线方程为 ye(e1)(x1), 即y(e1)x1.,(2)f(x)exa, 当a0时,f(x)0,函数f(x)在R上单调递增; 当a0时,由f(x)exa0得xln a, x(,ln a)时,f(x)0,f(x)单调递增. 综上,当a0时,函数f(x)的单调递增区间为(,); 当a0时,函数f(x)的单调递增区间为(ln a,),单调递减区间

5、为(,ln a).,(3)由(2)知,当a0时,函数f(x)在R上单调递增, f(x)b不可能恒成立; 当a0时,b0时,此时ab0;,当a0时,由函数f(x)b对任意xR都成立,得bf(x)min, f(x)minf(ln a)2aaln a,b2aaln a, ab2a2a2ln a,设g(a)2a2a2ln a(a0), g(a)4a(2aln aa)3a2aln a,,热点二利用导数解决不等式问题,函数、导数与不等式相交汇是高考命题的热点,命题形式灵活,常通过构造函数,利用函数的单调性和极值来解决.注意在构造新函数时,可直接利用题设条件写出函数的解析式,或通过对所要证明的不等式作差来构

6、造函数,或根据题设条件的结构特征构造函数.,考查角度一利用导数证明不等式,(1)求函数f(x)的单调递增区间; (2)证明:当x1时,f(x)x1;,探究提高(1)证明f(x)g(x)可转化为证明F(x)f(x)g(x)的最小值大于0,再利用导数求F(x)的最小值. (2)对于F(x)f(x)g(x)的最小值,不易求出的情况,也可以通过f(x),g(x)的最值情况进行证明.,考查角度二利用导数解决不等式恒成立问题,探究提高“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)g(a)对于xD恒成立,应求f(x)的最小值;若存在xD,使得f(x)g(a)成立,应求f(x)的最大值.在具体问题

7、中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立问题,以免细节出错.,【训练22】 (2014江苏卷)已知函数f(x)exex,其中e是自然对数的底数.,(1)证明:f(x)是R上的偶函数; (2)若关于x的不等式mf(x)exm1在(0,)上恒成立,求实数m的取值范围; (3)已知正数a满足:存在x01,),使得f(x0)a( 3x0)成立.试比较ea1与ae1的大小,并证明你的结论.,热点三利用导数研究方程的解或图象的交点问题,解决函数、导数与方程的根相交汇试题的关键在于将方程的根或函数

8、的零点问题转化为函数图象的交点问题或函数图象与x轴的交点个数,常涉及函数零点存在性定理,利用数形结合思想求解比较直观.除此之外,对于简单的三个“二次”问题,利用一元二次方程根与系数的关系整体代换,并结合图象可直观求解.,【例3】 (2015江苏卷)已知函数f(x)x3ax2b(a,bR).,探究提高函数零点或函数图象交点问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.,(1)当a为何值时,x轴为曲线yf(x)的切线; (2)用minm,n表示m,n中的最小值,设函数h(x)minf(x),g(x)(x0),讨论h(x)零点的个数.,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁