《UGNX6从基础学习到精通(下).ppt》由会员分享,可在线阅读,更多相关《UGNX6从基础学习到精通(下).ppt(349页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、UG NX6从入门到精通(下),本章重点内容,第七章 实体建模应用实例,本章将通过一些具体实例来讲述实体建模功能,涉及到的实例包括:连接件、双向紧固件和阀体。这些零件都是机械设计中的常用零件。通过这些零件的造型,读者可以熟悉实体造型的一般思路和操作过程,从而深入掌握实体造型的方法。,本章学习目标,掌握实体建模的思路和方法 掌握工程图纸的阅读方法 熟练掌握拉伸操作 掌握倒圆角的技巧 掌握镜像体和镜像特征操作 掌握拔模操作,7.1 实例一:连接件,本例将设计的零件工程图如下图所示。,7.1 实例一:连接件,1新建图形文件,启动UG NX6,新建【模型】文件“7-1.prt”,设置单位为【毫米】,单
2、击【确定】,进入【建模】模块。,7.1 实例一:连接件,2实体建模,绘制草图。选择下拉菜单中的【插入】|【草图】命令,选择YC-ZC平面作为草图平面,单击【确定】,进入【草图】模块。绘制如下图所示的草图,单击【完成草图】,退出【草图】模块。,7.1 实例一:连接件,2实体建模,创建拉伸实体1。选择下拉菜单中的【插入】|【设计特征】|【拉伸】命令,选择如下图所示的曲线作为【截面曲线】,并设置【开始距离】为-7,【结束距离】为31,其余保持默认设置,单击【确定】。,7.1 实例一:连接件,2实体建模,创建拉伸实体2。选择下拉菜单中的【插入】|【设计特征】|【拉伸】命令,选择如下图所示的曲线作为【截
3、面曲线】,并设置【开始距离】为0,【结束距离】为25,【布尔】为【求和】,其余保持默认设置,单击【确定】。,7.1 实例一:连接件,2实体建模,创建拉伸实体3。选择下拉菜单中的【插入】|【设计特征】|【拉伸】命令,选择如图所示的曲线作为【截面曲线】,并设置【开始距离】为0,【结束距离】为50,【布尔】为【求和】,其余保持默认设置,单击【确定】。,7.1 实例一:连接件,2实体建模,创建拉伸实体4。选择下拉菜单中的【插入】|【设计特征】|【拉伸】命令,选择如图所示的曲线作为【截面曲线】,并设置【开始距离】为16,【结束距离】为38,【布尔】为【求差】,其余保持默认设置,单击【确定】。,7.1 实
4、例一:连接件,2实体建模,创建拔模特征1。选择下拉菜单中的【插入】|【设计特征】|【拔模】命令,设置【类型】为【从边】,选择基准坐标系的Y轴作为【脱模方向】,选择如图所示的边为【固定边缘】,输入【角度1】为7,单击【确定】。,7.1 实例一:连接件,2实体建模,创建拔模特征2。选择下拉菜单中的【插入】|【设计特征】|【拔模】命令,设置【类型】为【从边】,选择基准坐标系的Z轴作为【脱模方向】,选择如图所示的边为【固定边缘】,输入【角度1】为-7,单击【确定】。,7.1 实例一:连接件,2实体建模,创建拔模特征3。选择下拉菜单中的【插入】|【设计特征】|【拔模】命令,设置【类型】为【从边】,选择基
5、准坐标系的Z轴作为【脱模方向】,选择如图所示的边为【固定边缘】,输入【角度1】为7,单击【确定】。,7.1 实例一:连接件,2实体建模,创建圆角特征1。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】为3,单击【确定】。,7.1 实例一:连接件,2实体建模,创建圆角特征2。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】为1,单击【确定】。,7.1 实例一:连接件,2实体建模,创建圆角特征3。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】
6、为1,单击【确定】。,7.1 实例一:连接件,2实体建模,创建斜角特征。选择下拉菜单中的【插入】|【细节特征】|【倒斜角】命令,选择如图所示的边,并输入【距离】为1,单击【确定】。,7.1 实例一:连接件,2实体建模,连接件创建完成,结果如图所示。,7.1 实例一:连接件,3实例总结,这个例子主要是拉伸、拔模与倒圆角的应用。拉伸时,选择方式需要设置为【相连曲线】或者【单条曲线】,然后选择需要拉伸的截面;拔模时,关键是要弄清【脱模方向】与【固定边缘】;倒圆角时,要遵循“先大后小,先断后连”的原则;此外,还用到了倒斜角。,7.2 实例二:双向紧固件,在本例中设计的零件如下图所示。,7.2 实例二:
7、双向紧固件,1新建图形文件,启动UG NX6,新建【模型】文件“7-2.prt”,设置单位为【毫米】,单击【确定】,进入【建模】模块。,7.2 实例二:双向紧固件,2实体建模,绘制草图。选择下拉菜单中的【插入】|【草图】命令,选择YC-ZC平面作为草图平面,单击【确定】,进入【草图】模块。绘制如图所示的草图,单击【完成草图】,退出【草图】模块。,7.2 实例二:双向紧固件,2实体建模,创建拉伸特征。选择下拉菜单中的【插入】|【设计特征】|【拉伸】命令,选择如图所示的曲线作为【截面曲线】,并设置对称拉伸的【距离】为15,其余保持默认设置,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,创
8、建基准平面。选择下拉菜单中的【插入】|【基准/点】|【基准平面】命令,设置【类型】为【按某一距离】,选择XC-YC平面作为参考平面,输入【距离】为30,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,绘制草图。选择下拉菜单中的【插入】|【草图】命令,选择第(3)步所创建的基准平面作为草图平面,选择基准坐标系的Y轴作为水平参考,单击【确定】,进入【草图】模块。绘制如图所示的草图,单击【完成草图】,退出【草图】模块。,7.2 实例二:双向紧固件,2实体建模,创建拉伸特征。选择下拉菜单中的【插入】|【设计特征】|【拉伸】命令,选择如图所示的曲线作为【截面曲线】,并设置【开始距离】为0,【结束
9、距离】为38,其余保持默认设置,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,绘制草图。选择下拉菜单中的【插入】|【草图】命令,选择YC-ZC平面作为草图平面,单击【确定】,进入【草图】模块。绘制如图所示的草图,单击【完成草图】,退出【草图】模块。,7.2 实例二:双向紧固件,2实体建模,创建拉伸特征。选择下拉菜单中的【插入】|【设计特征】|【拉伸】命令,选择如图所示的曲线作为【截面曲线】,并设置对称距离为13,【偏置】为【两侧】,【开始】为0,【结束】为-6,其余保持默认设置,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,创建拉伸特征。选择下拉菜单中的【插入】|【设计特征
10、】|【拉伸】命令,选择如图所示的曲线作为【截面曲线】,并设置对称距离为3,其余保持默认设置,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,绘制草图。选择下拉菜单中的【插入】|【草图】命令,选择YC-ZC平面作为草图平面,单击【确定】,进入【草图】模块。绘制如图所示的草图,单击【完成草图】,退出【草图】模块。,7.2 实例二:双向紧固件,2实体建模,创建拉伸特征。选择下拉菜单中的【插入】|【设计特征】|【拉伸】命令,选择如图所示的曲线作为【截面曲线】,并设置对称距离为5.5,其余保持默认设置,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,布尔求和。选择创建的5个拉伸体,对其进
11、行求和,使其成为一个整体。 绘制草图。选择下拉菜单中的【插入】|【草图】命令,以XC-YC平面作为草图平面,选择基准坐标系的Y轴作为水平参考,单击【确定】,进入【草图】模块。绘制如图所示的草图,单击【完成草图】,退出【草图】模块。,7.2 实例二:双向紧固件,2实体建模,创建拉伸特征。选择下拉菜单中的【插入】|【设计特征】|【拉伸】命令,选择如图所示的曲线作为【截面曲线】,其【开始距离】和【结束距离】只要贯穿圆柱体即可,设置【偏置】为【对称】,【开始】、【结束】均为0.5,【布尔】为【求差】,其余保持默认设置,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,隐藏基准坐标系及所有草图。
12、创建沉头孔特征。选择下拉菜单中的【插入】|【设计特征】|【NX5版本之前的孔】,设置如图 728所示的沉头孔参数,选择底部圆柱体的一个端面作为沉头孔的放置面,设置【定位方式】为【点到点】,选择圆柱端面的中心为参考点,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,创建沉头孔特征。以同样的方式在底部圆柱的另一端面创建沉头孔特征,沉头孔参数保持不变。 创建简单孔特征。选择下拉菜单中的【插入】|【设计特征】|【NX5版本之前的孔】,设置如图所示的简单孔参数,选择上部圆柱体的一个端面作为简单孔的放置面,设置【定位方式】为【点到点】,选择圆柱端面的中心为参考点,单击【确定】。,7.2 实例二:双
13、向紧固件,2实体建模,创建边倒圆特征。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】为10,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,创建边倒圆特征。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】为16,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,创建边倒圆特征。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】为25,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,创建边倒圆特征。选择下拉菜单中的【插入
14、】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】为2,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,创建边倒圆特征。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】为2,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,创建边倒圆特征。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】为4,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,创建边倒圆特征。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Rad
15、ius 1】为4,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,创建边倒圆特征。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】为2,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,创建边倒圆特征。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】为2,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,创建边倒圆特征。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】为2,单击【确定】。,7.2 实例二:双向紧固件,2实
16、体建模,创建边倒圆特征。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】为2,单击【确定】。,7.2 实例二:双向紧固件,2实体建模,双向紧固件创建完成,结果如图 所示。,7.2 实例二:双向紧固件,3实例总结,在创建实体模型前,要先对模型进行分析,思考模型可以分解为几个特征。例如本例所讲述的模型可以分解为5个拉伸特征。有了这5个拉伸特征后,模型的大致形状就出来了,接下来需要的就是对其进行布尔求和、打孔和倒圆等特征操作。,7.3 实例三:阀体,在本例中设计的零件如下图所示。,7.3 实例三:阀体,1新建图形文件,启动UG NX6,新建【模型】
17、文件“7-3.prt”,设置单位为【毫米】,单击【确定】,进入【建模】模块。,7.3 实例三:阀体,2实体建模,绘制草图。选择下拉菜单中的【插入】|【草图】命令,选择XC-YC平面作为草图平面,单击【确定】,进入【草图】模块。绘制如图所示的草图,单击【完成草图】,退出【草图】模块。,7.3 实例三:阀体,2实体建模,创建拉伸特征。选择下拉菜单中的【插入】|【设计特征】|【拉伸】命令,选择如图所示的曲线作为【截面曲线】,并设置对称拉伸的【距离】为17.5,其余保持默认设置,单击【确定】。,7.3 实例三:阀体,2实体建模,绘制草图。选择下拉菜单中的【插入】|【草图】命令,选择XC-YC平面作为草
18、图平面,单击【确定】,进入【草图】模块。绘制如图所示的草图,单击【完成草图】,退出【草图】模块。,7.3 实例三:阀体,2实体建模,创建拉伸特征。选择下拉菜单中的【插入】|【设计特征】|【拉伸】命令,选择如图所示的曲线作为【截面曲线】,并设置【开始距离】为17.5,【结束距离】为20,其余保持默认设置,单击【确定】。,7.3 实例三:阀体,2实体建模,创建镜像体。选择下拉菜单中的【插入】|【关联复制】|【镜像体】命令,选择步骤(4)创建的拉伸体为被镜像的【体】,选择基准坐标系的XC-YC平面作为【镜像平面】,如图 所示,单击【确定】。,7.3 实例三:阀体,2实体建模,创建基准平面。隐藏草图曲
19、线。选择下拉菜单中的【插入】|【基准/点】|【基准平面】命令,设置【类型】为【成一角度】,选择基准坐标系的YC-ZC平面作为【平面参考】,选择基准坐标系的ZC轴作为【通过轴】,输入【角度】为45,如图所示,单击【确定】。,7.3 实例三:阀体,2实体建模,绘制草图。选择下拉菜单中的【插入】|【草图】命令,选择步骤(6)所做基准平面作为草图平面,单击【确定】,进入【草图】模块。绘制如图所示的草图,单击【完成草图】,退出【草图】模块。,7.3 实例三:阀体,2实体建模,创建拉伸特征。选择下拉菜单中的【插入】|【设计特征】|【拉伸】命令,选择如图所示的曲线作为【截面曲线】,并设置【开始距离】为5.3
20、,【结束距离】为7.8,其余保持默认设置,单击【确定】。,7.3 实例三:阀体,2实体建模,创建镜像体。隐藏草图曲线。选择下拉菜单中的【插入】|【关联复制】|【镜像体】命令,选择步骤(8)创建的拉伸体为被镜像的【体】,选择基准坐标系的YC-ZC平面作为【镜像平面】,如图所示,单击【确定】。,7.3 实例三:阀体,2实体建模,布尔求和。选择已创建的5个实体,对其进行求和,使其成为一个整体。 创建基准平面。选择下拉菜单中的【插入】|【基准/点】|【基准平面】命令,设置【类型】为【成一角度】,选择图所示平面作为【平面参考】,选择图所示边缘作为【通过轴】,输入【角度】为-8,单击【确定】。,7.3 实
21、例三:阀体,2实体建模,绘制草图。选择下拉菜单中的【插入】|【草图】命令,选择步骤(11)所做基准平面作为草图平面,单击【确定】,进入【草图】模块。绘制如图所示的草图,单击【完成草图】,退出【草图】模块。,7.3 实例三:阀体,2实体建模,创建拉伸特征。选择下拉菜单中的【插入】|【设计特征】|【拉伸】命令,选择如图所示的曲线作为【截面曲线】,并设置【开始距离】为0,【结束距离】为7.8,【布尔】为【求差】,其余保持默认设置,单击【确定】,7.3 实例三:阀体,2实体建模,创建镜像特征。隐藏草图曲线。选择下拉菜单中的【插入】|【关联复制】|【镜像特征】命令,选择步骤(13)创建的拉伸特征为被镜像
22、的【特征】,选择基准坐标系的YC-ZC平面作为【镜像平面】,如图所示,单击【确定】。,7.3 实例三:阀体,2实体建模,创建简单孔特征。选择下拉菜单中的【插入】|【设计特征】|【NX5版本之前的孔】,设置如图所示的简单孔参数,选择实体的上表面的为简单孔的放置面,设置【定位方式】为【点到点】,选择圆弧的中心为参考点,单击【确定】。,7.3 实例三:阀体,2实体建模,绘制草图。选择下拉菜单中的【插入】|【草图】命令,选择XC-ZC平面作为草图平面,单击【确定】,进入【草图】模块。绘制如图所示的草图,单击【完成草图】,退出【草图】模块。,7.3 实例三:阀体,2实体建模,创建拉伸特征。选择下拉菜单中
23、的【插入】|【设计特征】|【拉伸】命令,选择如图所示的曲线作为【截面曲线】,并设置【开始距离】为0,【结束距离】为15,【布尔】为【求差】,其余保持默认设置,单击【确定】。,7.3 实例三:阀体,2实体建模,创建圆角特征。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】为1.3,单击【确定】。,7.3 实例三:阀体,2实体建模,创建镜像特征。隐藏草图曲线。选择下拉菜单中的【插入】|【关联复制】|【镜像特征】命令,选择步骤(17)创建的拉伸特征及步骤(18)创建的圆角特征作为被镜像的【特征】,选择基准坐标系的XC-YC平面作为【镜像平面】,如图
24、所示,单击【确定】。,7.3 实例三:阀体,2实体建模,创建圆角特征。选择下拉菜单中的【插入】|【细节特征】|【边倒圆】命令,选择如图所示的边,并输入【Radius 1】为2.8,单击【确定】。,7.3 实例三:阀体,2实体建模,阀体创建完成,结果如图所示,7.3 实例三:阀体,3实例总结,这个例子的关键是通过基准平面创建草图,而最为关键的是如何设计好基准平面,这里采用的方法相对比较灵活。此外,草图定位也很重要,不仅需要尺寸定位,有时还需要进行必要的约束,有些约束可以很大程度上辅助设计,如与轴线重合的参考线等。另外,还用到了镜像命令,通过此命令可以对对称分布的特征进行快速设计。,7.4 本章小
25、结,本章通过三个例子详细的介绍了UG的实体建模功能。这些例子由易到难,基本上涵盖了实体建模的主要方法和思路。零件设计的关键是思路要清晰,在设计之前要认真规划好设计步骤,这样不但可以使模型层次清楚,便于管理,还可以加快设计速度。,本章重点内容,第八章 装配,本章将介绍UG NX软件中的装配模块,主要内容包括:常用装配流程、配对组件、爆炸视图的建立等。,本章学习目标,熟悉装配流程 掌握装配导航器的使用 掌握自顶向下与自底向上的装配方法 掌握WAVE几何链接器的基本使用 掌握引用集的使用 了解装配约束的方法 了解爆炸视图的建立方法 掌握配对组件的方法,8.1 装配功能简介,装配是制造的最后环节,数字
26、化预装配可以尽早的发现问题,如干涉与间隙等。整个装配环节,本质上是将产品零件进行组织、定位和约束的过程,从而形成产品的总体结构和装配图。,8.1.1 综述,装配模块是UG NX集成环境中的一个应用模块,它可以将产品中的各个零件模块快速组合起来,从而形成产品的总体机构。装配过程其实就是在装配中建立部件之间的链接关系,即通过关联条件在部件间建立约束关系,以确定部件在产品中的位置。,装配的特点,装配时通过链接几何体而不是复制几何体,多个不同的装配可以共同使用多个相同的部件,因此所需内存少,装配文件小 既可以使用自底向上,又可以使用自顶向下的方法创建装配,8.1.1 综述,装配的特点,可以同时打开和编
27、辑多个部件,并且可以在装配的上下文中打开和编辑组件几何体 可简化装配的图形表示而无需编辑底层几何体。 装配将自动更新以反映引用部件的最新版本。 通过装配约束可以指定组件间的约束关系来在装配中定位它们。 装配导航器提供装配结构的图形显示,可以选择和操控组件以用于其他功能。 可将装配用于其他应用模块,尤其是制图和加工。,8.1.2 装配术语,装配:表示一个产品的一组零件和子装配。在 NX 中,装配是一个包含组件的部件文件。 子装配:实质上就是一个装配,只是被更高一层的装配作为一个组件使用。子装配是一个相对的概念,任何一个装配部件都可在更高级装配中用作子装配。 组件:按特定位置和方向使用在装配中的部
28、件。组件可以是由其他较低级别的组件组成的子装配。装配中的每个组件仅包含一个指向其主几何体的指针。在修改组件的几何体时,相关的几何体将自动更新以反映此更改。 组件部件:装配中的组件指向的部件文件。该文件保存组件的实际几何对象,在装配中只是引用而不是复制这些对象。,8.1.2 装配术语,组件成员:也称为“组件几何体”,是在装配中显示的组件部件中的几何对象。如果使用引用集,则组件成员可以是组件部件中所有几何体的一个子集。 显示部件:当前显示在图形窗口中的部件。 工作部件:可以创建和编辑几何体的部件。工作部件可以是已显示的部件,也可以是包含在已显示的装配部件中的所有组件文件。显示一个零件时,工作部件总
29、与显示的部件相同。 关联设计:按照组件几何体在装配中的显示对它直接进行编辑的功能。可选择其他组件中的几何体来帮助建模。,8.1.3 创建装配体的方法,根据装配体与零件之间的引用关系,可以有3种创建装配体的方法,即【自底向上装配】、【自顶向下装配】和【混合装配】。 自底向上装配:先设计单个零部件,在此基础上进行装配生成总体设计。所创建的装配体将按照组件、子装配和总装配的顺序进行排列,并利用关联约束条件进行逐级装配,从而形成装配模型。 自顶向下装配:首先设计完成装配体,并在装配级中创建零部件模型,然后再将其中子装配模型或单个可以直接用于加工的零件模型另外存储。 混合装配:将【自底向上装配】和【自顶
30、向下装配】结合在一起的装配方法。,8.2 装配导航器,如下图所示,【装配导航器】是一个可视的装配操作环境,将装配结构用树形结构表示出来,显示了装配结构树及节点信息。可以直接在装配导航器上进行各种装配操作。,8.2.1 概述,装配导航器可以在一个单独的窗口中以图形的方式显示装配结构,并可以在该导航器中进行各种操作,以及执行装配管理功能,例如选择组件以改变工作部件,改变显示部件,隐藏与显示部件,替换引用集等。,表示一个装配或子装配。如果图标为黄色,则装配在工作部件中;如果图标为灰色,但有纯黑色边,则装配为非工作部件;如果图标变灰,则装配已关闭。,表示一个组件。如果图标为黄色,则组件在工作部件中;如
31、果图标为灰色,但有纯黑色边,则组件为非工作部件;如果图标为变灰,则组件已关闭。,表示链接部件,8.2.1 概述,无约束:表示部件未约束,可任意移动。,完全约束:表示部件已经完全约束,没有自由度,不能随便移动。,部分约束:表示部件部分约束,仍存在一部分自由度。,约束不一致:表示约束存在,但存在矛盾或不一致。,8.2.2 装配导航器设置,打开装配导航器:在绘图区右侧的资源工具条上单击【装配导航器】的图标 ,或者将光标滑动到该图标上,即可打开装配导航器,如右图所示。,固定装配导航器/取消固定装配导航器:可以通过单击导航器标题栏上的固定图标 来固定装配导航器,使其变为 。这样,即使将光标移出导航器,它
32、也保持打开状态。与【固定装配导航器】的操作相反,即当图标状态由 变成 ,此时将光标移出导航器时,导航器就会滑回到选项卡中。,8.2.3 装配导航器的使用,在装配导航器中对组件执行的操作主要包括:【选择组件】、【标识组件】和【拖放组件】。 选择组件:为装配选择一个或多个组件。用鼠标单击导航器相应的节点,然后选择单个或多个组件。 标识组件:当光标在带有红色复选标记的非工作部件上时单击MB1,则将高亮显示该部件。高亮显示将持续到您选择其他部件为止。 拖放组件:可在按住 MB1 的同时选择装配导航器中的一个或多个组件,将他们拖到新位置。当放下组件时,目标组件将成为该组件在装配中的新父代。要注意的是,只
33、可拖放加载的组件。,8.3 自底向上装配,根据装配体与零件之间的引用关系,可以有3种创建装配体的方法,即【自底向上装配】、【自顶向下装配】和【混合装配】。 【自底向上装配】是指在设计过程中,先设计单个零部件,在此基础上进行装配生成总体设计。所创建的装配体将按照组件、子装配体和总装配的顺序进行排列,并利用约束条件进行逐级装配,从而形成装配模型,如右图所示。,自底向上装配,8.3.1 概念与步骤,【自底而上】装配建模的基本步骤:首先单独创建单个模型,然后再将其添加到装配。具体操作如下: 利用建模功能模块设计好装配体的零部件 将用于装配的零部件(组件)放置于指定的目录里,这样可以方便查找与载入 新建
34、装配体文件,进入装配环境 使用【添加组件】命令将零部件载入装配环境中,不一定要将用于装配的组件一次性载入,可以只载入当前需要装配的部件,装配好后再载入其他组件进行装配 利用【装配约束】或【配对条件】建立各组件之间的约束 完成整个装配体,保存文件。,8.3.2 组件定位,UG NX 5.0中引入的两个命令定义了装配中的组件定位。 装配约束命令可定义组件之间的关联位置约束 移动组件命令可用于移动装配中的组件,但不创建关联的位置关系。 这些新命令与 NX 5之前版本中的【配对条件】和【重定位组件】功能相似,而且会在 NX 的未来版本中完全将其替代。 这两组组件定位命令不能同时使用,在UG NX6.0
35、中的默认设置是【装配约束】和【移动组件】。若要将其改为【配对组件】和【重定位组件】,可以采用以下方法之一。 在【文件】|【实用工具】|【用户默认设置】|【装配】|【另外】|【界面】选项卡中,设置【定位】为【配对条件】。 设置【首选项】|【装配】|【交互】为【配对条件】。,8.3.2 组件定位,装配约束术语,在开始使用新的定位功能时,读者应当了解新功能和旧功能在概念上的几个区别。 双向性:NX 5 装配约束是双向的。约束是在组件“之间”创建的,而不是“从”一个组件“到”另一个组件创建的。这意味着约束中所涉及组件的选择顺序无关紧要。组件的选择顺序不会影响随后可以移动这两个组件中的哪一个,也不会影响
36、是否可以创建约束。 固定约束:因为约束是双向的,与某个约束有关的任何组件都可以移动,所以,通常先固定一个组件,并相对于该组件来约束另一个组件。这与在 2D 草图绘制中使用固定约束相似。,8.3.2 组件定位,装配约束类型,选择下拉菜单中的【装配】|【组件】|【装配约束】,系统弹出【装配约束】对话框,如右图所示。该对话框提供了10种创建装配约束的类型。,8.3.2 组件定位,装配约束类型,角度:定义两个对象间的角度尺寸。 中心:使一对对象之间的一个或两个对象居中,或使一对对象沿着另一个对象居中。 胶合:将组件“焊接”在一起,使它们作为刚体移动。 适合:使具有等半径的两个圆柱面合起来。此约束对确定
37、孔中销或螺栓的位置很有用。 接触对齐:约束两个组件,使它们彼此接触或对齐,是最常用的约束。 同心:将两个圆或椭圆曲线/边的中心点定位到同一个点,同时使它们共面。 距离:指定两个对象之间的最小3D距离。 固定:将组件固定在其当前位置上。 平行:定义两个对象的方向矢量为互相平行。 垂直: 定义两个对象的方向矢量为互相垂直。,8.3.2 组件定位,配对组件术语,配对条件:一个部件已经存在的一组约束。一个部件可能与多个部件有约束关系。 配对约束:定义了两个部件之间存在的几何位置约束。配对条件是由配对约束组成的。具体的配对参数、对应的几何约束对象在装配约束中给出。 要被装配的部件( from部件):表示
38、配对过程中要移动的部件。 装配到的部件( to部件):配对过程中静止的部件。装配时将【from部件】装配到【to部件】上。 自由度:一个部件如果没有施加约束,它将有6个自由度,分别为X、Y、Z三个方向的移动自由度和绕这三个方向的转动自由度。加入约束就是以限制部件的自由度,使其只有某些特定方向的运动或者完全静止。,8.3.2 组件定位,选择下拉菜单中的【装配】|【组件】|【贴合组件】命令,系统弹出【配对条件】对话框,如右图所示。【配对组件】命令是装配模块中的重要命令。其对话框由【配对条件树】、【配对类型】和【选择步骤】等几部分组成。,配对组件配对条件树,8.3.2 组件定位,配对:定位相同类型的
39、两个对象使他们重合。对于平面对象其配对约束法向将指向相反的方向;对于圆柱体对象,要求配对组件直径相等才能对齐轴线;对于圆锥体对象,要求装配组件角度相等才能对齐轴线。 对齐:对齐相关对象。对于平面对象,将两个对象定位,使其共面和相邻。对于轴对称对象则对齐轴。 角度:使两个组件的装配对象构成一定的角度关系,以便约束装配组件到正确的方位上。 平行:使两个组件的装配对象的方向矢量平行。 垂直:使两个组件的装配对象的方向矢量垂直。 中心:使被装配对象的中心与装配组件对象中心重合。 距离:通过给定两装配对象间的距离来装配两组件。 相切:通过两装配对象相切来装配两组件。,配对组件配对类型,8.3.3 引用集
40、,【引用集】控制从每个组件加载的以及在装配关联中查看的数据量。【引用集】策略有以下优点:加载时间更短;使用的内存更少;图形显示更整齐。,8.3.3 引用集,引用集的概念,引用集为命名的对象集合,且可从另一个部件引用这些对象。例如,可以将引用集用于引用代表不同加工阶段的几何体。使用引用集可以急剧减少甚至完全消除部分装配的图形表示,而不用修改实际的装配结构或基本的几何体模型。 可成为引用集成员的对象包括:几何体、坐标系、平面、图样对象、部件的直系组件。,8.3.3 引用集,默认引用集,每个零部件都有两个默认的引用集。 整个部件(Entire Part):该默认引用集表示引用部件的全部几何数据。在添
41、加部件到装配时,如果不选择其他引用集,则默认使用该引用集。 空的(Empty):该默认引用集表示不包含任何几何对象。当部件以空的引用集形式添加到装配中时,在装配中看不到该部件。,8.3.3 引用集,引用集对话框,选择下拉菜单中的【格式】|【引用集】命令后,系统弹出【引用集】对话框,如右图所示。利用该对话框,可以进行引用集的建立、删除、更名、查看、指定引用集属性以及修改引用集的内容等操作。,8.3.3 引用集,创建引用集,创建【用户定义的引用集】步骤如下: 选择下拉菜单中的【格式】|【引用集】命令,系统弹出【引用集】对话框。 单击【新建】命令,在图形窗口中选择要放入引用集中的对象。 在【引用集名
42、称】字段中为引用集提供一个名称。 完成对引用集的定义之后,单击【关闭】。,8.4 组件的处理,产品的整个装配模型是由单个部件或子装配进行装配而得到的,将这些对象添加到装配模型中形成装配组件。可以对装配结构中的组件进行删除、编辑、阵列、替换和重新定位等处理。这些处理功能主要是通过主菜单【装配】|【组件】中的命令或【装配】工具条上的命令来实现。,8.4.1 添加组件,选择下拉菜单中的【装配】|【组件】|【添加组件】命令,系统弹出【添加组件】对话框,如右图所示。利用该对话框可以向装配环境中引入一个部件作为装配组件。相应地这种创建装配模型的方法即是前面所说的【自底向上】方法。,8.4.2 替换组件,【替换组件】命令可以移除现有组件,并按原始组件的精确方向和位置添加其他组件。选择下拉菜单中的【装配】|【组件】|【替换组件】命令,系统弹出【替换组件】对话框,如右图所示。,8.4.3 重定位组件,只有当【装配首选项】中的【装配定位】选择为【配对条件】时,工具栏上才有【重定位组件】命令。【重定位组件】可以将一个或多个选定的组件移动到新的位置。 选择下拉菜单中的【装配】|【组件】|【重定位组件】命令,系统弹出【重定位组件】对话框,如右图所示。该对话框有两个选项卡,即【变换】与【选项】。,8.4.4 阵列组件,