《三余弦定理·三垂线定理·三正弦定理(3页).doc》由会员分享,可在线阅读,更多相关《三余弦定理·三垂线定理·三正弦定理(3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
-三余弦定理三垂线定理三正弦定理-第 3 页三余弦定理三垂线定理三正弦定理三余弦定理(最小角定理或爪子定理)设A为面上一点,过A的直线AO在面上的射影为AB,AC为面上的一条直线,那么OAC,BAC,OAB三角的余弦关系为: cosOAC=cosBACcosOAB (cosBAC和cosOAB只能是锐角)斜线与平面内一条直线夹角的余弦值=斜线与平面所成角的余弦值射影与平面内直线夹角的余弦值 证明:如上图,自点O作OBAB于点B,过B作BCAC于C,连OC,则易知ABC、AOC、ABO均为直角三角形辅助记忆:这三个角中,角是最大的,其余弦值最小,等于另外两个角的余弦值之积。斜线与平面所成角是斜线与平面内所有直线所成的角中最小的角。三垂线定理(三余弦定理的特殊情况)平面内的一条直线,如果与穿过这个平面的一条斜线在这个平面上的射影垂直,那么它也和这条斜线垂直。逆定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。三正弦定理设二面角MABN的度数为,在平面M上有一条射线AC,它和棱AB所成角为,和平面N所成的角为,则sin=sinsin(如图)证明:如上图,过C作CO平面N于点O,过O作直线OB二面角的棱于点B,连OA,CB,则易知CAO,CBO,ABC均为直角三角形于是,sin=,sin=,sin= sin=sinsin附: